【題目】已知x1是一元二次方程x2+mx+20的一個解,則m的值是( 。

A.3B.3C.0D.03

【答案】A

【解析】

根據(jù)一元二次方程解的定義把x=1代入x2+mx+2=0得到關于m的方程,然后解關于m的方程即可.

解:把x1代入方程x2+mx+201+m+20,

解得m=﹣3

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小軍同學在學校組織的社會實踐活動中,負責了解他所居住的小區(qū)450戶具名的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表:

(1)請根據(jù)題中已有的信息補全頻數(shù)分布:① ,② ,③ ;

(2)如果家庭月均用水量在5≤x<8范圍內(nèi)為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?

(3)記月均用水量在2≤x<3范圍內(nèi)的兩戶為a1,a2,在7≤x<8范圍內(nèi)的3戶b1、b2、b3,從這5戶家庭中任意抽取2戶,試完成下表,并求出抽取出的2戶家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為 ;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);

(4)若從對校園安全知識達到了“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知分式 ,當x=2時,分式無意義,則a=;當a為a<6的一個整數(shù)時,使分式無意義的x的值共有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若2x-1的平方根是±5,則x_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設方程的兩個實數(shù)根分別為x1 , x2(用含m的代數(shù)式表示);
①求方程的兩個實數(shù)根x1 , x2(用含m的代數(shù)式表示);
②若mx1<8﹣4x2 , 直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)等式的性質(zhì),下列各式的變形中,一定正確的是( 。

A. a=b,則a+c=b-c B. a=b+2,則3a=3b+6

C. 6a=2b,則a=3b D. ac=bc,則a=b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的方程x2﹣4x+2m=0有兩個不相等的實數(shù)根,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經(jīng)核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.

查看答案和解析>>

同步練習冊答案