【題目】一幢房屋的側面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求證:GF⊥OC;
(2)求EF的長(結果精確到0.1m).
(參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
【答案】
(1)證明:CD與FG交于點M,
∵∠OCD=25°,四邊形ABCD是矩形,∠FGB=65°.
∴∠FMC=65°,
∴∠MFC=90°,
∴GF⊥CO
(2)解:作GN⊥EH于點N,
∵FG∥EH,GF⊥CO;
∴四邊形ENGF是矩形;
∴EF=NG,
∵∠FGB=∠NHG=65°,
∴sin65°= = ≈0.91,
∴EF=NG=2.366m≈2.4m.
【解析】(1)根據(jù)∠OCD=25°,四邊形ABCD是矩形,∠FGB=65°,得出∠FMC=65°,得∠MFC=90°,即證得GF⊥OC;
(2)根據(jù)矩形的判定得出EF=NG,再利用解直角三角形的知識得出NG的長,即可得到EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上的一點,分別以AC.BC為邊在AB的同側作正方形ACDE和正方形CBFG,連接EG.BG.BE,當BC=1時,△BEG的面積記為S1,當BC=2時,△BEG的面積記為S2,……,以此類推,當BC=n時,△BEG的面積記為Sn,則S2020-S2019的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉中心 點,按順時針方向旋轉 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,、的交點為,現(xiàn)作如下操作:
第一次操作,分別作和的平分線,交點為,
第二次操作,分別作和的平分線,交點為,
第三次操作,分別作和的平分線,交點為,
…
第次操作,分別作和的平分線,交點為.
若度,那等于__________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極支持鄂州市創(chuàng)建國家衛(wèi)生城市工作,某商家計劃從廠家采購A,B兩種清潔產品共20件,產品的采購單價(元/件)是采購數(shù)量(件)的相關信息如下表所示.
采購數(shù)量(件) | 2 | 4 | 6 | … |
A產品單價(元) | 1460 | 1420 | 1380 | … |
B產品單價(元) | 1280 | 1260 | 1240 | … |
(1)設B產品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1與x的關系式;
(2)經商家與廠家協(xié)商,采購A產品的數(shù)量不少于B產品數(shù)量的 ,且B產品采購單價不高于1250元,求該商家共有幾種進貨方案?
(3)該商家分別以1760元/件和1700元/件的銷售單價售出A,B兩種產品,且全部售完,在(2)的條件下,求采購A種產品多少件時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一盛有部分水的圓柱形小水杯放入事先沒有水的大圓柱形容器內,現(xiàn)用一注水管沿大容器內壁勻速注水(如圖所示),則小水杯內水面的高度h(cm)與注水時間t(min)的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com