【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,以每袋標(biāo)準(zhǔn)質(zhì)量45克為標(biāo)準(zhǔn),檢測每袋的質(zhì)量是否符合該標(biāo)準(zhǔn),超過或不足的克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣5 | ﹣3 | 0 | 1 | 2 | 5 |
袋數(shù) | 1 | 3 | 6 | 4 | 5 | 1 |
回答下列問題:
(1)這20袋樣品中,完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的有 袋;
(2)這批樣品的總質(zhì)量是多少克?(要求寫出算式).
【答案】(1)6;(2)這批樣品的總質(zhì)量是905克
【解析】
(1)根據(jù)題意:當(dāng)與標(biāo)準(zhǔn)質(zhì)量的差值為0的時(shí)候就是標(biāo)準(zhǔn)的質(zhì)量;
(2)根據(jù)題意總袋數(shù)的標(biāo)準(zhǔn)質(zhì)量之和,然后取加減每袋的誤差值即可得出最后結(jié)果.
解:
(1)完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的,就是與標(biāo)準(zhǔn)質(zhì)量的差值為0的,從表中可知為6袋
故答案為:6.
(2)由題意得:
=
=905
答:這批樣品的總質(zhì)量是905克.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣40|+(b+8)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請?jiān)跀?shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問:當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,對角線 AC、BD交于點(diǎn) M,點(diǎn)E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點(diǎn)F.
(1)求證:;
(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過點(diǎn)A的⊙F交AB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為 ( )
A. 3 B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師隨機(jī)抽査了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成不完整的條形統(tǒng)計(jì)圖和不完整的扇形統(tǒng)計(jì)圖(如圖所示).
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出扇形統(tǒng)計(jì)圖中冊數(shù)為4的扇形的圓心角的度數(shù);
(3)老師隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補(bǔ)查了 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OB為∠AOC內(nèi)一條射線,∠AOB的余角是它自身的兩倍.
(1)求∠AOB的度數(shù);
(2)射線OE從OA開始,在∠AOB內(nèi)以1°/s的速度繞著O點(diǎn)逆時(shí)針方向旋轉(zhuǎn),轉(zhuǎn)到OB停止,同時(shí)射線OF在∠BOC內(nèi)從OB開始以3°/s的速度繞O點(diǎn)逆時(shí)針方向旋轉(zhuǎn)轉(zhuǎn)到OC停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①若OE,OF運(yùn)動(dòng)的任一時(shí)刻,均有∠COF=3∠BOE,求∠AOC的度數(shù);
②OP為∠AOC內(nèi)任一射線,在①的條件下,當(dāng)t=10時(shí),以OP為邊所有角的度數(shù)和的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時(shí)的情況,那么照這樣壘下去
一級 二級
①填出下表中未填的兩空,觀察規(guī)律。
階梯級數(shù) | 一級 | 二級 | 三級 | 四級 |
石墩塊數(shù) | 3 | 9 |
②到第n級階梯時(shí),共用正方體石墩_______________塊(用n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com