【題目】如圖①,已知拋物線y=ax2+bx+3a0)與x軸交于點A10)和點B-3,0),與y軸交于點C

1)求拋物線的解析式;
2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;
3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標(biāo).

【答案】(1)y=-x2-2x+3;(2)存在,P(-1,)或P(-1,-)或P(-1,6)或P(-1,);(3)當(dāng)a=-時,S四邊形BOCE最大,且最大值為,此時,點E坐標(biāo)為(-,).

【解析】

1)已知拋物線過A、B兩點,可將兩點的坐標(biāo)代入拋物線的解析式中,用待定系數(shù)法即可求出二次函數(shù)的解析式;

2)可根據(jù)(1)的函數(shù)解析式得出拋物線的對稱軸,也就得出了M點的坐標(biāo),由于C是拋物線與y軸的交點,因此C的坐標(biāo)為(03),根據(jù)M、C的坐標(biāo)可求出CM的距離.然后分三種情況進(jìn)行討論:

①當(dāng)CP=PM時,P位于CM的垂直平分線上.求P點坐標(biāo)關(guān)鍵是求P的縱坐標(biāo),過PPQy軸于Q,如果設(shè)PM=CP=x,那么直角三角形CPQCP=x,OM的長,可根據(jù)M的坐標(biāo)得出,CQ=3-x,因此可根據(jù)勾股定理求出x的值,P點的橫坐標(biāo)與M的橫坐標(biāo)相同,縱坐標(biāo)為x,由此可得出P的坐標(biāo).

②當(dāng)CM=MP時,根據(jù)CM的長即可求出P的縱坐標(biāo),也就得出了P的坐標(biāo)(要注意分上下兩點).

③當(dāng)CM=CP時,因為C的坐標(biāo)為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標(biāo)是6,由此可得出P的坐標(biāo);

3)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進(jìn)行計算,過EEFx軸于F,S四邊形BOCE=SBFE+S梯形FOCE.直角梯形FOCE中,FOE的橫坐標(biāo)的絕對值,EFE的縱坐標(biāo),已知C的縱坐標(biāo),就知道了OC的長.在△BFE中,BF=BO-OF,因此可用E的橫坐標(biāo)表示出BF的長.如果根據(jù)拋物線設(shè)出E的坐標(biāo),然后代入上面的線段中,即可得出關(guān)于四邊形BOCE的面積與E的橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得四邊形BOCE的最大值及對應(yīng)的E的橫坐標(biāo)的值.即可求出此時E的坐標(biāo).

(1)∵拋物線y=ax2+bx+3(a0)x軸交于點A(1,0)和點B(3,0),

解得:.

∴所求拋物線解析式為:y=x22x+3

(2)∵拋物線解析式為:y=x22x+3,

∴其對稱軸為

∴設(shè)P點坐標(biāo)為(1,a),當(dāng)x=0時,y=3,

C(0,3),M(1,0)

∴當(dāng)CP=PM,(1)2+(3a)2=a2,解得a=,

∴P點坐標(biāo)為:;

∴當(dāng)CM=PM,(1)2+32=a2,解得

P點坐標(biāo)為:

∴當(dāng)CM=CP,由勾股定理得:(1)2+32=(1)2+(3a)2,解得a=6

P點坐標(biāo)為:P4 (1,6).

綜上所述存在符合條件的點P,其坐標(biāo)為 P(1,6);

(3)過點EEFx軸于點F,設(shè)E(a,a22a+3)(3<a<0)

EF=a22a+3,BF=a+3,OF=a

∴當(dāng)a=,S四邊形BOCE最大,且最大值為.

此時,E坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點AD不重合),射線PEBC的延長線交于點Q

1)求證:

2)過點EPB于點F,連結(jié)AF,當(dāng)時,①求證:四邊形AFEP是平行四邊形;

②請判斷四邊形AFEP是否為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知tanMON=2,矩形ABCD的邊AB在射線OM上,AD=2,AB=m,CFON,垂足為點F.

1)如圖(1),作AEON,垂足為點E. 當(dāng)m=2時,求線段EF的長度;

圖(1

2)如圖(2),聯(lián)結(jié)OC,當(dāng)m=2,且CD平分∠FCO時,求∠COF的正弦值;

圖(2

3)如圖(3),當(dāng)△AFD與△CDF相似時,求m的值.

圖(3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAB是⊙O的直徑,BC與⊙O交于點D,點EAC上,且∠ADE=B

1)求證:DE是⊙O的切線;

2)若⊙O的半徑為5,CE=2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCDCD邊上任意一點.

1)以點A為中心,把△ADE順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;

2)在BC邊上畫一點F,使△CFE的周長等于正方形ABCD的周長的一半,請簡要說明你取該點的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件輪廓為圓形的文物出土后只留下了一塊殘片,文物學(xué)家希望能把此件文物進(jìn)行復(fù)原,因此把殘片抽象成了一個弓形,如圖所示,經(jīng)過測量得到弓形高CD米,∠CAD30°,請你幫助文物學(xué)家完成下面兩項工作:

1)作出此文物輪廓圓心O的位置(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)求出弓形所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:把一個半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.

如圖,拋物線yx22x3x軸交于點A,B,與y軸交于點D,以AB為直徑,在x軸上方作半圓交y軸于點C,半圓的圓心記為M,此時這個半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.

1)直接寫出點AB,C的坐標(biāo)及“蛋圓”弦CD的長;

A   ,B   ,C   ,CD   

2)如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.

求經(jīng)過點C的“蛋圓”切線的解析式;

求經(jīng)過點D的“蛋圓”切線的解析式;

3)由(2)求得過點D的“蛋圓”切線與x軸交點記為E,點F是“蛋圓”上一動點,試問是否存在SCDESCDF,若存在請求出點F的坐標(biāo);若不存在,請說明理由;

4)點P是“蛋圓”外一點,且滿足∠BPC60°,當(dāng)BP最大時,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租汽車公司計劃購買A型和B型兩種節(jié)能汽車,若購買A型汽車4輛,B型汽車7輛,共需310萬元;若購買A型汽車10輛,B型汽車15輛,共需700萬元.

1A型和B型汽車每輛的價格分別是多少萬元?

2)該公司計劃購買A型和B型兩種汽車共10輛,費用不超過285萬元,且A型汽車的數(shù)量少于B型汽車的數(shù)量,請你給出費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限,兩點,與坐標(biāo)軸交于兩點,連結(jié),.

1)求的函數(shù)解析式;

2)將直線向上平移個單位到直線,此時,直線上恰有一點滿足,求的值.

查看答案和解析>>

同步練習(xí)冊答案