(本題10分)已知一個正比例函數(shù)和一個一次函數(shù)的圖象交于點P(-2,2),且一次函數(shù)的圖象與y軸相交于點Q(0,4)
【小題1】(1)求這兩個函數(shù)的解析式
【小題2】(2)在同一坐標系內(nèi),分別畫出這兩個函數(shù)的圖象
【小題3】(3)求出的面積

【小題1】y=-x,
【小題2】y=x+4
【小題3】S=4解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題10分)已知△ABC的一條邊BC的長為5,另兩邊AB、AC的長是關于x的一元二次方程的兩個實數(shù)根.

(1)求證:無論為何值時,方程總有兩個不相等的實數(shù)根;

(2)當為何值時,△ABC是以BC為斜邊的直角三角形;

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分)
已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。
M1的坐標是     ▲     
(2) 請你通過改變P點坐標,對直線M1 M的解析式y(tǒng)﹦kx+b進行探究可得 k﹦  ▲ ,   若點P的坐標為(m,0)時,則b﹦  ▲  ;
(3) 依據(jù)(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省海安縣曲塘中學附屬初級中學九年級上學期期中考試數(shù)學卷 題型:解答題

(本題10分)已知△ABC的一條邊BC的長為5,另兩邊ABAC的長是關于x的一元二次方程的兩個實數(shù)根.
(1)求證:無論為何值時,方程總有兩個不相等的實數(shù)根;
(2)當為何值時,△ABC是以BC為斜邊的直角三角形;

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東萊蕪) 題型:解答題

(本題10分)
已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。
M1的坐標是     ▲     
(2) 請你通過改變P點坐標,對直線M1 M的解析式y(tǒng)﹦kx+b進行探究可得 k﹦  ▲ ,   若點P的坐標為(m,0)時,則b﹦  ▲  ;
(3) 依據(jù)(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東萊蕪) 題型:解答題

(本題10分)

已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y = 的圖像上.小明對上述問題進行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.

(1)如圖所示,若反比例函數(shù)解析式為y= ,P點坐標為(1, 0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;

(溫馨提示:作圖時,別忘了用黑色字跡的鋼筆或簽字筆描黑喔。

M1的坐標是     ▲     

(2) 請你通過改變P點坐標,對直線M1 M的解析式y(tǒng)﹦kx+b進行探究可得 k﹦  ▲  ,    若點P的坐標為(m,0)時,則b﹦  ▲   ;

(3) 依據(jù)(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

 

查看答案和解析>>

同步練習冊答案