【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數(shù)y= (k>0)的圖象經(jīng)過點D且與邊BA交于點E,連接DE.
(1)連接OE,若△EOA的面積為3,則k=;
(2)是否存在點D,使得點B關于DE的對稱點在OC上?若存在,求出點D的坐標;若不存在,請說明理由.
【答案】
(1)6
(2)解:連接DB′,
設D( ,5),E(3, ),
∴BD=3﹣ ,BE=5﹣ ,
∴tan∠BDE= = = ,
∵B與B′關于DE對稱,
∴DE是BB′的中垂線,
∴BB′⊥DE,BG=B′G,DB′=BD,
∴∠DGB=90°,
∴∠BDE+∠DBB′=90°,
∠CB′B+∠DBB′=90°,
∴∠BDE=∠CB′B,
∴tan∠BDE=tan∠CB′B= = = ,
∴CB′= ,
設CD=x,則BD=B′D=3﹣x,
則 ,
∴x= ,
∴D( ,5).
【解析】解:(1)連接OE,如圖1,
∵Rt△AOE的面積為3,
∴k=2×3=6.
所以答案是:6;
【考點精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義的相關知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 在△ABC中,∠C=∠A-∠B,則△ABC為直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,則△ABC為直角三角形
C. 在△ABC中,若a=c,b=c,則△ABC為直角三角形
D. 在△ABC中,若a∶b∶c=2∶2∶4,則△ABC為直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC的兩條外角平分線AP、CP相交于點P,PH⊥AC于H.若∠ABC=60°,則下面的結論:①∠ABP=30°;②∠APC=60°;③△ABC≌△APC;④PA∥BC;⑤∠APH=∠BPC,其中正確結論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小學我們已經(jīng)知道三角形三個內(nèi)角和是180°,對于如圖1中,,交于點,形成的兩個三角形中的角存在以下關系:①;②.試探究下面問題:
已知的平分線與的平分線交于點,
(1)如圖2,若,,,則_________;
(2)如圖3,若不平行,,,則_______.
(3)在總結前兩問的基礎上,借助圖3,探究與、之間是否存在某種等量關系?若存在,請說明理由;若不存在,請舉例說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明一家利用國慶八天駕車到某景點旅游,小汽車出發(fā)前油箱有油35L,行駛若干小時后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示,根據(jù)圖像回答下列問題:
(1)小汽車行駛______h后加油,中途加油_______L
(2)求加油前油箱余油量Q與行駛時間t的函數(shù)關系式
(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點200km,車速80km/h,要到達目的地,油箱中的油是否夠用?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了支持國貨,哈市某手機賣場計劃用萬元購進華為品牌手機.從賣場獲知華為品牌種不同型號的手機的進價及售價如下表:
種 | 種 | 種 | |
進價(元/部) | |||
售價(元/部) |
若該手機賣場同時購進兩種不同型號的手機臺,萬元剛好用完.
(1)請您確定該手機的進貨方案,并說明理由;
(2)該賣場老板準備把這批手機銷售的利潤的捐給公益組織,在同時購進兩種不同型號的手機方案中,為了使捐款最多,你選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于P(1,m).
(1)求k的值;
(2)若點Q與點P關于y=x成軸對稱,求點Q的坐標為
(3)若過P、Q兩點的拋物線與y軸的交點為N(0, ),求該拋物線的解析式,并求出拋物線的對稱軸方程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于AB 的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為16,△ABC的周長28,則AB為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com