【題目】如圖,在矩形中,,點(diǎn)是的中點(diǎn),點(diǎn)在上,,點(diǎn)在線段上.若是以為頂角的等腰三角形且底角與相等,則____.
【答案】6或者
【解析】
分兩種情況:①MN為等腰△PMN的底邊時(shí),作PF⊥MN于F,則∠PFM=∠PFN=90°,由矩形的性質(zhì)得出AB=CD,BC=,∠A=∠C=90°,得出AB=CD=,BD=,證明△PDF∽△BDA,得出,求出PF=,證出CE=2CD,由等腰三角形的性質(zhì)得出MF=NF,∠PNF=∠DEC,證出△PNF∽△DEC,得出,求出NF=2PF=3,即可得出答案;
②MN為等腰△PMN的腰時(shí),作PF⊥BD于F,由①得:PF=,MF=3,設(shè)MN=PN=x,則FN=3-x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
分兩種情況:
①MN為等腰△PMN的底邊時(shí),作PF⊥MN于F,如圖1所示:
則∠PFM=∠PFN=90°,
∵四邊形ABCD是矩形,
∴AB=CD,BC=,∠A=∠C=90°,
∴AB=CD=,BD=
∵點(diǎn)P是AD的中點(diǎn),
∴PD=
∵∠PDF=∠BDA,
∴△PDF∽△BDA,
∴ ,即 ,
解得:PF=,
∵CE=2BE,
∴BC=AD=3BE,
∴BE=CD,
∴CE=2CD,
∵△PMN是等腰三角形且底角與∠DEC相等,PF⊥MN,
∴MF=NF,∠PNF=∠DEC,
∵∠PFN=∠C=90°,
∴△PNF∽△DEC,
∴
∴MF=NF=2PF=3,
∴MN=2NF=6;
②MN為等腰△PMN的腰時(shí),作PF⊥BD于F,如圖2所示:
由①得:PF=,MF=3,
設(shè)MN=PN=x,則FN=3-x,
在Rt△PNF中,
解得:x=
,即MN=;
綜上所述,MN的長為6或;
故答案為:6或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.點(diǎn)A2,B2,C2分別是邊B1C1,A1C1,A1B1的中點(diǎn);點(diǎn)A3,B3,C3分別是邊B2C2,A2C2,A2B2的中點(diǎn);…以此類推,則第2020個(gè)三角形的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣m)2﹣m+1(a、m為常數(shù)且a<0),下列結(jié)論:
①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=﹣x+1上;
②a(x-1)(x+3)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣3<x1<x2<1;
③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2≥2m,則y1≤y2;
④當(dāng)﹣1<x<2時(shí),y隨x的增大而增大,則m的取值范圍為m≥2.
其中正確結(jié)論的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m=1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);
②若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣1≤x≤4時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)是邊上的一動(dòng)點(diǎn),連結(jié).
(1)若將沿折疊,點(diǎn)落在矩形的對(duì)角線上點(diǎn)處,試求的長;
(2)點(diǎn)運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)作直線交于點(diǎn),將與分別沿與折疊,點(diǎn)與點(diǎn)分別落在點(diǎn),處,若,,三點(diǎn)恰好在同一直線上,且試求此時(shí)的長;
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到邊的中點(diǎn)處時(shí),過點(diǎn)作直線交于點(diǎn),將與分別沿與折疊,點(diǎn)與點(diǎn)重合于點(diǎn)處,連結(jié),請(qǐng)求出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-2),畫出平移后的△A2B2C2;
(3)若將△A2B2C2繞某一點(diǎn)旋轉(zhuǎn)可以得到△A1B1C,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,若干個(gè)半徑為3個(gè)單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右上下起伏運(yùn)動(dòng),點(diǎn)在直線上的速度為每秒3個(gè)單位長度,點(diǎn)在弧線上的速度為每秒π個(gè)單位長度,則2020秒時(shí),點(diǎn)P的坐標(biāo)是( 。
A.(2020,0)B.(3030,0)C.( 3030,)D.(3030,﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.
(1)求m的值及一次函數(shù)解析式;
(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com