【題目】網(wǎng)絡(luò)銷(xiāo)售是一種重要的銷(xiāo)售方式.某鄉(xiāng)鎮(zhèn)農(nóng)貿(mào)公司新開(kāi)設(shè)了一家網(wǎng)店,銷(xiāo)售當(dāng)?shù)剞r(nóng)產(chǎn)品.其中一種當(dāng)?shù)靥禺a(chǎn)在網(wǎng)上試銷(xiāo)售,其成本為每千克10元.公司在試銷(xiāo)售期間,調(diào)查發(fā)現(xiàn),每天銷(xiāo)售量y(kg)與銷(xiāo)售單價(jià)x(元)滿(mǎn)足如圖所示的函數(shù)關(guān)系(其中).
(1)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)若農(nóng)貿(mào)公司每天銷(xiāo)售該特產(chǎn)的利潤(rùn)要達(dá)到3100元,則銷(xiāo)售單價(jià)x應(yīng)定為多少元?
(3)設(shè)每天銷(xiāo)售該特產(chǎn)的利潤(rùn)為W元,若,求:銷(xiāo)售單價(jià)x為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
【答案】(1);(2)銷(xiāo)售單價(jià)x應(yīng)定為15元;(3)當(dāng)時(shí),每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是6480元.
【解析】
(1)當(dāng)時(shí),可直接根據(jù)圖象寫(xiě)出;當(dāng)時(shí),y與x成一次函數(shù)關(guān)系,用待定系數(shù)法求解即可;
(2)根據(jù)銷(xiāo)售利潤(rùn)=每千克的利潤(rùn)(x-10)×銷(xiāo)售量y,列出方程,解方程即得結(jié)果;
(3)根據(jù)銷(xiāo)售利潤(rùn)w=每千克的利潤(rùn)(x-10)×銷(xiāo)售量y,可得w與x的二次函數(shù),再根據(jù)二次函數(shù)求最值的方法即可求出結(jié)果.
解:(1)由圖象知,當(dāng)時(shí),;
當(dāng)時(shí),設(shè),將,代入得,解得,
∴y與x之間的函數(shù)關(guān)系式為;
綜上所述,;
(2),
∵,∴,
∴,
解得:(不合題意舍去),,
答:銷(xiāo)售單價(jià)x應(yīng)定為15元;
(3)當(dāng)時(shí),,
∵,,
∴當(dāng)時(shí),每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是6480元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
成績(jī)x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問(wèn)題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在________分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的2000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)證明推斷:如圖(1),在正方形ABCD中,點(diǎn)E,Q分別在邊BC,AB上,DQ⊥AE于點(diǎn)O,點(diǎn)G,F分別在邊CD,AB上,GF⊥AE.
①求證:DQ=AE;
②推斷:的值為 ;
(2)類(lèi)比探究:如圖(2),在矩形ABCD中,=k(k為常數(shù)).將矩形ABCD沿GF折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,得到四邊形FEPG,EP交CD于點(diǎn)H,連接AE交GF于點(diǎn)O.試探究GF與AE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展應(yīng)用:在(2)的條件下,連接CP,當(dāng)k=時(shí),若tan∠CGP=,GF=2,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放置的△OAB1,△B1A1B2,△B2A2B3,都是邊長(zhǎng)為2的等邊三角形,邊AO在Y軸上,點(diǎn)B1、B2、B3都在直線(xiàn)y=x上,則點(diǎn)A2019的坐標(biāo)為__________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】沙坪壩正在創(chuàng)建全國(guó)文明城市,其中垃圾分類(lèi)是一項(xiàng)重要的舉措.現(xiàn)隨機(jī)抽查了沙區(qū)部分小區(qū)住戶(hù)12月份某周內(nèi)“垃圾分類(lèi)”的實(shí)施情況,并繪制成了以下兩幅不完整的統(tǒng)計(jì)圖,圖中表示實(shí)施天數(shù)小于5天,表示實(shí)施天數(shù)等于5天,表示實(shí)施天數(shù)等于6天,表示實(shí)施天數(shù)等于7天.
(1)求被抽查的總戶(hù)數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求扇形統(tǒng)計(jì)圖中的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,直線(xiàn)l1∥l2∥l3,點(diǎn)C在l2上,以點(diǎn)C為直角頂點(diǎn)作∠ACB=90°,角的兩邊分別交l1與l3于點(diǎn)A、B,連結(jié)AB,過(guò)點(diǎn)C作CD⊥l1于點(diǎn)D,延長(zhǎng)DC交l3于點(diǎn)E.
(1)求證:△ACD∽△CBE.
(2)應(yīng)用:如圖②,在圖①的基礎(chǔ)上,設(shè)AB與l2的交點(diǎn)為F,若AC=BC,l1與l2之間的距離為2,l2與l3之間的距離為1,則AF的長(zhǎng)度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店老板到廠(chǎng)家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的倍.
(1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?
(2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)AB與拋物線(xiàn)C:y=ax2+2x+c相交于點(diǎn)A(﹣1,0)和點(diǎn)B(2,3)兩點(diǎn).
(1)求拋物線(xiàn)C函數(shù)表達(dá)式;
(2)若點(diǎn)M是位于直線(xiàn)AB上方拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),求此時(shí)的面積S及點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com