【題目】如圖,已知點(diǎn)分別在的邊上運(yùn)動(dòng)(不與點(diǎn)重合),的平分線(xiàn),的延長(zhǎng)線(xiàn)交角的平分線(xiàn)于點(diǎn).

1)若,求的度數(shù).

2)若,求的度數(shù).

3)若,請(qǐng)用含的代數(shù)式表示的度數(shù).

【答案】(1) 144°;(2)60°;(3)

【解析】

(1)根據(jù)三角形外角性質(zhì)可得:∠ABN=∠MON+OAB,從而求得∠OAB的度數(shù),再由鄰補(bǔ)角的性質(zhì)可求得的度數(shù);

(2) 根據(jù)三角形外角性質(zhì)可得:∠ABN=∠MON+OAB,從而求得∠ABN的度數(shù),再由 ABN=D+即可求得的度數(shù);

(3)方法與(2)方法相同.

(1)∵∠ABNAOB的一個(gè)外角,

∴∠ABN=∠MON+OAB,

又∵,

∴∠OAB156°-120°=36°,

又∵∠BAM+OAB180°,

∴∠BAM=180°-36°=144°;

(2) ∵∠ABNAOB的一個(gè)外角,

∴∠ABN=∠MON+OAB,

又∵,

∴∠ABN120°+32°=152°,

又∵的平分線(xiàn),的延長(zhǎng)線(xiàn)交角的平分線(xiàn)于點(diǎn)

ABN=D+,

76°=D+16°,

∴∠D=60°;

(3) ∵∠ABNAOB的一個(gè)外角,

∴∠ABN=∠MON+OAB,

又∵的平分線(xiàn),的延長(zhǎng)線(xiàn)交角的平分線(xiàn)于點(diǎn),

ABN=D+,

(MON+OAB)= D+,

∴∠D=MON;

又∵,

∴∠D=no.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛客車(chē)從甲地開(kāi)往乙地,一輛出租車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)客車(chē)離甲地的距離為千米,出租車(chē)離甲地的距離為千米,兩車(chē)行駛的時(shí)間為x小時(shí),、關(guān)于x的圖象如圖所示:

1)根據(jù)圖象,分別寫(xiě)出關(guān)于x的關(guān)系式(需要寫(xiě)出自變量取值范圍);

2)當(dāng)兩車(chē)相遇時(shí),求x的值;

3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車(chē)進(jìn)入加油站時(shí),出租車(chē)恰好進(jìn)入加油站,求加油站離甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)的三角形)在如圖所示的位置.

1)將向右平移4個(gè)單位,向下平移3個(gè)單位得,請(qǐng)?jiān)诰W(wǎng)格中作出;

2)若連接,,則這兩條線(xiàn)段的位置關(guān)系是  

3的面積為  ;

4)在整個(gè)平移過(guò)程中,點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 觀察下列等式:

1個(gè)等式:a1×();

2個(gè)等式:a2×();

3個(gè)等式:a3×();

4個(gè)等式:a4×();

請(qǐng)解答下列問(wèn)題:

1)按以上規(guī)律列出第5個(gè)等式:a5      ;

nn為正整數(shù))個(gè)等式:an      ;

2)求a1+a2+a3+a4++a2019的值;

3)數(shù)學(xué)符號(hào)f1+f2+f3++fn),試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線(xiàn)x=1.

b2>4ac4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線(xiàn)上的兩點(diǎn),則y1y2

上述4個(gè)判斷中,正確的是( 。

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 中,對(duì)于點(diǎn) ,我們把點(diǎn) 叫做點(diǎn) 的伴隨點(diǎn)。已知點(diǎn) 的伴隨點(diǎn)為 ,點(diǎn)的伴隨點(diǎn)為 ,點(diǎn)的伴隨點(diǎn)為 ,…,這樣依次得到點(diǎn) 。若點(diǎn)的坐標(biāo)為 ,則 的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線(xiàn)AFCD于點(diǎn)E,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F

1)求證:BF=CD

2)連接BE,若BEAF,BFA=60°,BE=,求平行四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)軸只有一個(gè)交點(diǎn),且與軸交于點(diǎn),如圖,設(shè)它的頂點(diǎn)為B

1)求的值;

2過(guò)Ax軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)C,求證:ABC是等腰直角三角形;

3將此拋物線(xiàn)向下平移4個(gè)單位后,得到拋物線(xiàn),且與x軸的左半軸交于E點(diǎn),與y軸交于F點(diǎn),如圖.請(qǐng)?jiān)趻佄锞(xiàn)上求點(diǎn)P,使得是以EF為直角邊的直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案