【題目】如圖,已知∠AOB60°,在∠AOB的平分線OM上有一點C,將一個120°角的頂點與點C重合,它的兩條邊分別與直線OA、OB相交于點D、E

1)當∠DCE繞點C旋轉到CDOA垂直時(如圖1),請猜想OE+ODOC的數(shù)量關系,并說明理由;

2)當∠DCE繞點C旋轉到CDOA不垂直時,到達圖2的位置,(1)中的結論是否成立?并說明理由;

3)當∠DCE繞點C旋轉到CDOA的反向延長線相交時,上述結論是否成立?請在圖3中畫出圖形,若成立,請給于證明;若不成立,線段OD、OEOC之間又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

【答案】1;(2)(1)中結論仍然成立,見解析;(3)(1)中結論不成立, ,見解析.

【解析】

1)先判斷出∠OCE=60°,再利用特殊角的三角函數(shù)得出ODOC,同OEOC,即可得出結論;

2)同(1)的方法得OF+OGOC,再判斷出△CFD≌△CGE,得出DF=EG,最后等量代換即可得出結論;

3)同(2)的方法即可得出結論.

1)∵OM是∠AOB的角平分線,

∴∠AOC=BOCAOB=30°.

CDOA,∴∠ODC=90°,

∴∠OCD=60°,

∴∠OCE=DCE﹣∠OCD=60°.

RtOCD中,OD=OCcos30°OC,

同理:OEOC,

OD+OEOC

2)(1)中結論仍然成立,理由如下:

過點CCFOAF,CGOBG

∴∠OFC=OGC=90°.

∵∠AOB=60°,

∴∠FCG=120°,

同(1)的方法得:OFOC,OGOC,

OF+OGOC

CFOA,CGOB,且點C是∠AOB的平分線OM上一點,

CF=CG

∵∠DCE=120°,∠FCG=120°,

∴∠DCF=ECG,

∴△CFD≌△CGE,

DF=EG,

OF=OD+DF=OD+EG,OG=OEEG,

OF+OG=OD+EG+OEEG=OD+OE,

OD+OEOC;

3)(1)中結論不成立,結論為:OEODOC,理由如下:

過點CCFOAF,CGOBG,

∴∠OFC=OGC=90°.

∵∠AOB=60°,

∴∠FCG=120°,

同(1)的方法得:OFOC,OGOC

OF+OGOC

CFOACGOB,且點C是∠AOB的平分線OM上一點,

CF=CG

∵∠DCE=120°,∠FCG=120°,

∴∠DCF=ECG,

∴△CFD≌△CGE

DF=EG,

OF=DFOD=EGOD,OG=OEEG,

OF+OG=EGOD+OEEG=OEOD

OEODOC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax12+ka0)經過點(﹣10),頂點為M,過點P0,a+4)作x軸的平行線1,l與拋物線及其對稱軸分別交于點A,BH.以下結論:①當x3.1時,y0;②存在點P,使APPH;③(BPAP)是定值;④設點M關于x軸的對稱點為M',當a2時,點M′在l下方,其中正確的是( 。

A. ①③B. ②③C. ②④D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 A2,m),B2,m-5)在平面直角坐標系中,點O為坐標原點.若ABO是直角三角形,則m的值不可能是( )

A.4B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019319日,河南省教育廳發(fā)布《關于推進中小學生研學旅行的實施方案》,某中學為落實方案,給學生提供了以下五種主題式研學線路:A紅色河南,B厚重河南C出彩河南,D生態(tài)河南,E老家河南為了解學生最喜歡哪一種研學線路(每人只選取一種),隨機抽取了部分學生進行調查,將調查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.根據(jù)以上信息解答下列問題:

調查結果統(tǒng)計表

主題

人數(shù)/

百分比

A

75

n%

B

m

30%

C

45

15%

D

60

E

30

1)本次接受調查的總人數(shù)為   人,統(tǒng)計表中m   ,n   

2)補全條形統(tǒng)計圖.

3)若把條形統(tǒng)計圖改為扇形統(tǒng)計圖,則生態(tài)河南主題線路所在扇形的圓心角度是   

4)若該實驗中學共有學生3000人,請據(jù)此估計該校最喜歡老家河南主題線路的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,則下列結論:①∠AME=90°;②∠BAF=EDB;③MD=2AM=4EM;④AM=MF.其中正確結論的個數(shù)是(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大唐芙蓉園是中國第一個全方位展示盛唐風貌的大型皇家園林式文化主題公園,全園標志性建筑一紫云樓為代表,展示了“形神升騰紫云景,天下臣服帝王心”的唐代帝王風范(如圖).小風和小花等同學想用一些測量工具和所學的幾何知識測量“紫云樓”的高度,來檢驗自己掌握知識和運用知識的能力,他們經過研究需要兩次測量:首先,在陽光下,小風在紫云樓影子的末端C點處豎立一根標桿CD,此時,小花測得標桿CD的影長CE2米,CD2米;然后,小風從C點沿BC方向走了5.4米,到達G處,在G處豎立標桿FG,接著沿BG后退到點M處時,恰好看見紫云樓頂端A,標桿頂端F在一條直線上,此時,小花測得CM0.6米,小風的眼睛到地面的距離HM1.5米,FG2米.

如圖,已知ABBM,CDBM,FGBM,HMBM,請你根據(jù)題中提供的相關信息,求出紫云樓的高AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.

(1)求拋物線的函數(shù)表達式.

(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,ADCD于點D.EAB延長線上一點,CE交⊙O于點F,連結OC,AC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王爺爺上午800從家出發(fā),外出散步,到老年閱覽室看了一會兒報紙,繼續(xù)以相同的速度散步一段時間,然后回家.如圖描述了王爺爺在散步過程中離家的路程s(米)與所用時間t(分)之間的函數(shù)關系,則下列信息錯誤的是( 。

A. 王爺爺看報紙用了20分鐘

B. 王爺爺一共走了1600

C. 王爺爺回家的速度是80/

D. 上午832王爺爺在離家800米處

查看答案和解析>>

同步練習冊答案