【題目】如圖,∠B=46°,△ABC的外角∠DAC和∠ACF的平分線交于點E,則∠AEC的度數(shù)為________.
【答案】67°
【解析】根據(jù)三角形內(nèi)角和定理、角平分線的定義以及三角形外角定理求得:
∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=113°;最后在△AEC中利用三角形內(nèi)角和定理可以求得∠AEC的度數(shù).
如圖:
∵三角形的外角∠DAC和∠ACF的平分線交于點E,
∴∠EAC=∠DAC,∠ECA=∠ACF,
∵∠DAC=∠B+∠2,∠ACF=∠B+∠1.
∴∠DAC+∠ACF= (∠B+∠2)+ (∠B+∠1)= (∠B+∠B+∠1+∠2),
∵∠B=46°(已知),∠B+∠1+∠2=180°(三角形內(nèi)角和定理),
∴∠DAC+∠ACF=113°.
∴∠AEC=180°(∠DAC+∠ACF)=67°.
故答案是:67°.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價20元,乒乓球每盒定價5元.現(xiàn)兩家商店搞促銷活動,甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈一盒乒乓球;乙店的優(yōu)惠辦法是:全部商品按定價的9折出售.某班需購買乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)當購買乒乓球的盒數(shù)為x盒時,在甲店購買需付款 元?在乙店 購買需付款 元?(用含x的代數(shù)式表示)
(2)當購買乒乓球盒數(shù)為10盒時,去哪家商店購買較合算?請計算說明.
(3) 當購買乒乓球盒數(shù)為10盒時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方案,并求出此時需付多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)的電力資源豐富,并且得到了較好的開發(fā).該地區(qū)一家供電公司為了鼓勵居民用電,采用分段計費的方法來計算電費.月用電量x(度)與相應電費y(元)之間的函數(shù)圖像如圖所示.
(1)月用電量為100度時,應交電費 元;
(2)當x≥100時,求y與x之間的函數(shù)關(guān)系式;
(3)月用電量為260度時,應交電費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】具備下列條件的三角形ABC中,不為直角三角形的是( )
A.∠A+∠B=∠C B.∠A=∠B=∠C
C.∠A=90°﹣∠B D.∠A﹣∠B=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:和分別可以按如圖所示的方式“分裂”成2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行“分裂”,則“分裂”出的奇數(shù)中,最大的奇數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O,點E在對角線AC上.
(1)若BC=DC,∠CBD=39°,求∠BCD的度數(shù);
(2)若在AC上有一點E,且EC=BC=DC,求證:∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質(zhì)量的差值(單位:千克) | ||||||
筐 數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在RtABC中,∠ACB=90°,BAC=30°,BC=6. (I)如圖①,將線段CA繞點C順時針旋轉(zhuǎn)30°,所得到與AB交于點M,則CM的長=;
(II)如圖②,點D是邊AC上一點D且AD=2 ,將線段AD繞點A旋轉(zhuǎn),得線段AD′,點F始終為BD′的中點,則將線段AD繞點A逆時針旋轉(zhuǎn)度時,線段CF的長最大,最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com