【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+1經(jīng)過(guò)點(diǎn)A(4,﹣3),頂點(diǎn)為點(diǎn)B,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),l是過(guò)點(diǎn)(0,2)且垂直于y軸的直線,過(guò)P作PH⊥l,垂足為H,連接PO.
(1)求拋物線的解析式,并寫出其頂點(diǎn)B的坐標(biāo);
(2)①當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)處時(shí),計(jì)算:PO= ,PH= ,由此發(fā)現(xiàn),PO PH(填“>”、“<”或“=”);
②當(dāng)P點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),猜想PO與PH有什么數(shù)量關(guān)系,并證明你的猜想;
(3)如圖2,設(shè)點(diǎn)C(1,﹣2),問(wèn)是否存在點(diǎn)P,使得以P,O,H為頂點(diǎn)的三角形與△ABC相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線解析式為y=﹣x2+1,頂點(diǎn)B(0,1);(2)①5,5,=;②結(jié)論:PO=PH,理由詳見(jiàn)解析;(3)點(diǎn)P坐標(biāo)(1,)或(﹣1,).
【解析】
試題分析:(1)把A點(diǎn)的坐標(biāo)代入y=ax2+1求得a值,即可得函數(shù)解析式,根據(jù)解析式確定頂點(diǎn)坐標(biāo)即可;(2)①求出PO、PH即可得結(jié)論;②結(jié)論:PO=PH.設(shè)點(diǎn)P坐標(biāo)(m,﹣m2+1),根據(jù)兩點(diǎn)之間距離公式分別求得PH、PO長(zhǎng),即可得結(jié)論.(3)首先判斷PH與BC,PO與AC是對(duì)應(yīng)邊,設(shè)點(diǎn)P(m,﹣m2+1),由列出方程即可解決問(wèn)題.
試題解析:(1)解:∵拋物線y=ax2+1經(jīng)過(guò)點(diǎn)A(4,﹣3),
∴﹣3=16a+1,
∴a=﹣,
∴拋物線解析式為y=﹣x2+1,頂點(diǎn)B(0,1).
(2)①當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)處時(shí),∵PO=5,PH=5,
∴PO=PH,
②結(jié)論:PO=PH.
理由:設(shè)點(diǎn)P坐標(biāo)(m,﹣m2+1),
∵PH=2﹣(﹣m2+1)=m2+1
PO==m2+1,
∴PO=PH.
(3)∵BC=,AC=,AB=,
∴BC=AC,
∵PO=PH,
又∵以P,O,H為頂點(diǎn)的三角形與△ABC相似,
∴PH與BC,PO與AC是對(duì)應(yīng)邊,
∴,設(shè)點(diǎn)P(m,﹣m2+1),
∴,
解得m=±1,
∴點(diǎn)P坐標(biāo)(1,)或(﹣1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我區(qū)5月份連續(xù)五天的日最高氣溫(單位:℃)分別為:33,30,30,32,35.則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是( )
A. 32,32 B. 32,33 C. 30,31 D. 30,32
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì).小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小聰?shù)奶骄窟^(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量的取值范圍是____;
(2)下表是與的幾組對(duì)應(yīng)值,請(qǐng)直接寫出m的值,
… | -3 | -1.5 | -1 | 0 | 0.6 | 1.4 | 1.5 | 2 | 3 | 3.5 | 5 | … | ||
… | 0.5 | 0.2 | 0 | -1 | -3 | -4 | 6 | 5 | 3 | 2 | 1.8 | 1.5 | … |
(3)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系xoy中,描出以上表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象.
(4)結(jié)合函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過(guò)D作DFAB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形內(nèi)一點(diǎn)P(-3,2),如果將該三角形向右平移2個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,那么點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是( ).
A. (-1,1) B. (-5,3) C. (-5,1) D. (-1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只螞蟻由(0,0)先向上爬4個(gè)單位長(zhǎng)度,再向右爬3個(gè)單位長(zhǎng)度,再向下爬2個(gè)單位長(zhǎng)度后,它所在位置的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】9歲的小芳身高1.36米,她的表姐明年想報(bào)考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對(duì)北京有所了解.他們四人7月31日下午從無(wú)錫出發(fā),1日到4日在北京旅游,8月5日上午返回?zé)o錫.
無(wú)錫與北京之間的火車票和飛機(jī)票價(jià)如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價(jià)票;飛機(jī) (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價(jià)票.他們往北京的開(kāi)支預(yù)計(jì)如下:
住宿費(fèi) (2人一間的標(biāo)準(zhǔn)間) | 伙食費(fèi) | 市內(nèi)交通費(fèi) | 旅游景點(diǎn)門票費(fèi) (身高超過(guò)1.2米全票) |
每間每天x元 | 每人每天100元 | 每人每天y元 | 每人每天120元 |
假設(shè)他們四人在北京的住宿費(fèi)剛好等于上表所示其他三項(xiàng)費(fèi)用之和,7月31日和8月5日合計(jì)按一天計(jì)算,不參觀景點(diǎn),但產(chǎn)生住宿、伙食、市內(nèi)交通三項(xiàng)費(fèi)用.
(1)他們往返都坐火車,結(jié)算下來(lái)本次旅游總共開(kāi)支了13668元,求x,y的值;
(2)若去時(shí)坐火車,回來(lái)坐飛機(jī),且飛機(jī)成人票打五五折,其他開(kāi)支不變,他們準(zhǔn)備了14000元,是否夠用? 如果不夠,他們準(zhǔn)備不再增加開(kāi)支,而是壓縮住宿的費(fèi)用,請(qǐng)問(wèn)他們預(yù)定的標(biāo)準(zhǔn)間房?jī)r(jià)每天不能超過(guò)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com