【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),y軸交于點(diǎn)C(0,-4),連接BC,BC為一邊,點(diǎn)O為對(duì)稱(chēng)中心作菱形BDEC,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn)設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線L交拋物線于點(diǎn)Q,BD于點(diǎn)M.

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?

(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在請(qǐng)說(shuō)明理由.

【答案】(1) 拋物線解析式為y=x2-x-4;(2) 當(dāng)m=4時(shí),四邊形CQMD是平行四邊形; (3) SBCN= 8.

【解析】

(1)用待定系數(shù)法直接求出拋物線解析式;
(2)由菱形的對(duì)稱(chēng)性可知,點(diǎn)D的坐標(biāo),根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質(zhì)可得關(guān)于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQMD的形狀;
(3)先判斷出點(diǎn)N在平行于BC且與拋物線只有一個(gè)交點(diǎn)時(shí)的位置,確定出點(diǎn)N的坐標(biāo),用面積和差求出三角形BCN的面積.

(1)設(shè)拋物線的解析式為y=ax2+bx+c,

根據(jù)題意得,

拋物線解析式為y=x2-x-4.

(2)C(0,-4),

由菱形的對(duì)稱(chēng)性可知,點(diǎn)D的坐標(biāo)為(0,4).

設(shè)直線BD的解析式為y=kx+b',則解得k=-,b'=4.

直線BD的解析式為y=-x+4.

lx軸,

點(diǎn)M的坐標(biāo)為,點(diǎn)Q的坐標(biāo)為.

如圖,當(dāng)MQ=DC時(shí),四邊形CQMD是平行四邊形,

=4-(-4).化簡(jiǎn)得m2-4m=0,解得m1=0(不合題意舍去),m2=4.

當(dāng)m=4時(shí),四邊形CQMD是平行四邊形.

(3)存在,理由:

當(dāng)過(guò)點(diǎn)N平行于直線BC的直線與拋物線只有一個(gè)交點(diǎn)時(shí),BCN的面積最大.

B(8,0),C(0,-4),

BC=4.直線BC解析式為y=x-4,設(shè)過(guò)點(diǎn)N平行于直線BC的直線L解析是為y=x+n,

拋物線解析式為y=x2-x-4,聯(lián)立①②得,x2-8x-4(n+4)=0,

Δ=64+16(n+4)=0,

n=-8,

直線L解析式為y=x-8,將n=-8代入中得,x2-8x+16=0

x=4,

y=-6,

N(4,-6),

如圖,過(guò)點(diǎn)NNGAB,

SBCN=S四邊形OCNG+SMNG-SOBC=(4+6)×4+(8-4)×6-×8×6=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貨運(yùn)公司接到噸物資運(yùn)載任務(wù),現(xiàn)有甲、乙、丙三種車(chē)型的汽車(chē)供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如表:

車(chē)型

汽車(chē)運(yùn)載量(/)

5

8

10

汽車(chē)運(yùn)費(fèi)(/)

400

500

600

1)甲種車(chē)型的汽車(chē)輛,乙種車(chē)型的汽車(chē)輛,丙種車(chē)型的汽車(chē)輛,它們一次性能運(yùn)載    噸貨物.

2)若全部物資都用甲、乙兩種車(chē)型的汽車(chē)來(lái)運(yùn)送,需運(yùn)費(fèi)元,求需要甲、乙兩種車(chē)型的汽車(chē)各多少輛?

3)為了節(jié)省運(yùn)費(fèi),該公司打算用甲、乙、丙三種車(chē)型的汽車(chē)共輛同時(shí)參與運(yùn)送,請(qǐng)你幫貨運(yùn)公司設(shè)計(jì)派車(chē)方案;并求出各種派車(chē)方案的運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過(guò)點(diǎn)DDFBE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)幾何的一個(gè)重要方法就是要學(xué)會(huì)抓住基本圖形,讓我們來(lái)做一次研究性學(xué)習(xí).

1)如圖①所示的圖形,像我們常見(jiàn)的學(xué)習(xí)用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請(qǐng)你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說(shuō)明理由:

2)如圖②,若ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點(diǎn)O,試探究∠BOC與∠A的關(guān)系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點(diǎn)O,請(qǐng)直接寫(xiě)出∠BOC與∠A的關(guān)系式為    _

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:

問(wèn)題背景:

ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.

小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

1)請(qǐng)你將ABC的面積直接填寫(xiě)在橫線上.

思維拓展:

2)我們把上述求ABC面積的方法叫做構(gòu)圖法,若ABC三邊的長(zhǎng)分別為a,2aaa0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的ABC,并求出它的面積是:

探索創(chuàng)新:

3)若ABC三邊的長(zhǎng)分別為、、m0,n0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫(huà)出示意圖,并求出ABC的面積為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么ACD的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種品牌電腦,四月份營(yíng)業(yè)額為萬(wàn)元.為擴(kuò)大銷(xiāo)售,在五月份將每臺(tái)電腦按原價(jià)折銷(xiāo)售,銷(xiāo)售量比四月份增加臺(tái),營(yíng)業(yè)額比四月份多了千元.

求四月份每臺(tái)電腦的售價(jià).

六月份該商店又推出一種團(tuán)購(gòu)促銷(xiāo)活動(dòng),若購(gòu)買(mǎi)不超過(guò)臺(tái),每臺(tái)按原價(jià)銷(xiāo)售:若超過(guò)臺(tái),超過(guò)的部分折銷(xiāo)售,要想在六月份團(tuán)購(gòu)比五月份團(tuán)購(gòu)更合算,則至少要買(mǎi)多少臺(tái)電腦?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,EB=EC,AE的延長(zhǎng)線交BCD,則圖中全等的三角形共有_____對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有各自的規(guī)劃.假定生男生女的概率相,回答下列問(wèn)題

(1家庭已有一個(gè)男孩,準(zhǔn)備生一個(gè)孩子,第二個(gè)孩子是女孩的率是 ;

(2)乙家庭沒(méi)有孩子準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案