【題目】如圖,已知△ABC內(nèi)接于⊙O,點C在劣弧AB上(不與點A,B重合),點D為弦BC的中點,DE⊥BC,DE與AC的延長線交于點E,射線AO與射線EB交于點F,與⊙O交于點G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,

(1)點點同學(xué)通過畫圖和測量得到以下近似數(shù)據(jù):

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.

【答案】
(1)

解:β=α+90°,γ=﹣α+180°

連接OB,

∴由圓周角定理可知:2∠BCA=360°﹣∠BOA,

∵OB=OA,

∴∠OBA=∠OAB=α,

∴∠BOA=180°﹣2α,

∴2β=360°﹣(180°﹣2α),

∴β=α+90°,

∵D是BC的中點,DE⊥BC,

∴OE是線段BC的垂直平分線,

∴BE=CE,∠BED=∠CED,∠EDC=90°

∵∠BCA=∠EDC+∠CED,

∴β=90°+∠CED,

∴∠CED=α,

∴∠CED=∠OBA=α,

∴O、A、E、B四點共圓,

∴∠EBO+∠EAG=180°,

∴∠EBA+∠OBA+∠EAG=180°,

∴γ+α=180°


(2)

解:當(dāng)γ=135°時,此時圖形如圖所示,

∴α=45°,β=135°,

∴∠BOA=90°,∠BCE=45°,

由(1)可知:O、A、E、B四點共圓,

∴∠BEC=90°,

∵△ABE的面積為△ABC的面積的4倍,

,

,

設(shè)CE=3x,AC=x,

由(1)可知:BC=2CD=6,

∵∠BCE=45°,

∴CE=BE=3x,

∴由勾股定理可知:(3x)2+(3x)2=62,

x= ,

∴BE=CE=3 ,AC=

∴AE=AC+CE=4 ,

在Rt△ABE中,

由勾股定理可知:AB2=(3 2+(4 2,

∴AB=5 ,

∵∠BAO=45°,

∴∠AOB=90°,

在Rt△AOB中,設(shè)半徑為r,

由勾股定理可知:AB2=2r2,

∴r=5,

∴⊙O半徑的長為5.


【解析】(1)由圓周角定理即可得出β=α+90°,然后根據(jù)D是BC的中點,DE⊥BC,可知∠EDC=90°,由三角形外角的性質(zhì)即可得出∠CED=α,從而可知O、A、E、B四點共圓,由圓內(nèi)接四邊形的性質(zhì)可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面積為△ABC的面積的4倍,所以 ,根據(jù)勾股定理即可求出AE、AC的長度,從而可求出AB的長度,再由勾股定理即可求出⊙O的半徑r;
【考點精析】通過靈活運用余角和補角的特征和三角形的面積,掌握互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān);三角形的面積=1/2×底×高即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1、x2是方程x2﹣4x+m=0的兩個根,且x1+x2﹣x1x2=1,則x1+x2= , m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A0,4),B24),C3,﹣1).

1)試在平面直角坐標(biāo)系中,標(biāo)出AB、C三點;

2)求ABC的面積.

3)若A1B1C1ABC關(guān)于x軸對稱,寫出A1B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABDFD+B=180°,

1)求證:DEBC

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示.

1)分別寫出各點的坐標(biāo):___________,_________,_______________

2是由經(jīng)過怎樣的平移變換得到的?答:___________________

3)若點內(nèi)部一點,則內(nèi)部的對應(yīng)點的坐標(biāo)為___________

4)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:

1)如圖①,在中,點、、分別在邊、、上,且,若,求的度數(shù).請將下面的解答過程補充完整,并填空.

1)解:

(兩直線平行,內(nèi)錯角相等).

,

___________________________________).

__________________).

應(yīng)用:

2)如圖②,在中,點、、分別在邊、、的延長線上,且,,若,求的大。ㄓ煤的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保,綠色出行的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達(dá)圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y()與時間x(分鐘)的關(guān)系如圖.請結(jié)合圖象,解答下列問題:

(1)填空:a=________;b=________;m=________.

(2)若小軍的速度是 120 /分,求小軍第二次與爸爸相遇時距圖書館的距離.

(3)(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案