【題目】在平面直角坐標系xOy中,二次函數(shù)的圖象與x軸交于點AB(點A在點B的左側),與y軸交于點C,頂點為P.

1)直接寫出點AC,P的坐標.

2)畫出這個函數(shù)的圖象.

【答案】1A-1,0),C0,-3),P1-4);(2)畫圖見解析.

【解析】

1)把二次函數(shù)的一般形式變形為交點式和頂點式,即可得出點A、點B坐標和頂點P的坐標,當x=0時,y=-3,可得C點坐標;

2)根據(jù)點C坐標和對稱軸可得點C關于對稱軸對稱的點的坐標,利用描點法畫出二次函數(shù)圖象即可.

1)∵y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,

∴圖象與x軸交點為(-10)和(3,0),頂點P坐標為(1,-4),

∵點A在點B左側,

A-1,0),

∵當x=0時,y=-3

∴點C坐標為(0,-3.

2)∵C0,-3),對稱軸為x=1,

點C關于直線x=1的對稱點為(2-3),

∴二次函數(shù)圖象如圖所示:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知不等臂蹺蹺板AB長為3,蹺蹺板AB的支撐點O到地面上的點H的距高OH=0.6米。當蹺蹺板AB的一個端點A碰到地面時,AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.

1)當AB的另一個端點B碰到地面時(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?

2)當AB的另一個端點B碰到地面時(如右圖),A到直線BH的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示.則下列結論:

①A,B兩城相距300千米;

②乙車比甲車晚出發(fā)1小時,卻早到1小時;

③乙車出發(fā)后2.5小時追上甲車;

④當甲、乙兩車相距50千米時,t=

其中正確的結論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,函數(shù)的圖象G經(jīng)過點,直線y軸交于點B,與圖象G交于點C.

1)求m的值.

2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象G在點AC之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.

①當直線l過點時,直接寫出區(qū)域W內的整點個數(shù).

②若區(qū)域W內的整點不少于4個,結合函數(shù)圖象,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了測量一個鐵球的直徑,將該鐵球放入工件槽內,測得的有關數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B的半徑OA上的一點(不與端點重合),過點BOA的垂線交于點C,D,連接OD,E上一點,,過點C的切線l,連接OE并延長交直線l于點F.

1)①依題意補全圖形.

②求證:∠OFC=ODC.

2)連接FB,若BOA的中點,的半徑是4,求FB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是線段OB上的一點(不與點B重合),D,E是半圓上的點且CDBE交于點F,用①,②DCAB,③FB=FD中的兩個作為題設,余下的一個作為結論組成一個命題,則組成真命題的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4NBC上一點且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.

3)推廣運用:

如圖3,已知菱形ABCD的邊長為4,∠B60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點DEABCAB邊上的點,CDE是等邊三角形,∠ACB=120°,則下列結論中錯誤的是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案