【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.
(1)如圖1,把△AMN沿直線MN折疊得到△PMN,設(shè)AM=x.
i.若點P正好在邊BC上,求x的值;
ii.在M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.
(2)如圖2,以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMQN.試判斷直線BC與⊙O的位置關(guān)系,并說明理由.
【答案】(1)i.當x=2時,點P恰好落在邊BC上;ii. y=,當x=時,重疊部分的面積最大,其值為2;(2)當x=時,⊙O與直線BC相切;當x<時,⊙O與直線BC相離;x>時,⊙O與直線BC相交.
【解析】試題分析:(1)i.根據(jù)軸對稱的性質(zhì),可求得相等的線段與角,可得點M是AB中點,即當x=AB=2時,點P恰好落在邊BC上;
ii.分兩種情況討論:①當0<x≤2時,△MNP與梯形BCNM重合的面積為△MNP的面積,根據(jù)軸對稱的性質(zhì)△MNP的面積等于△AMN的面積,易見y=x2
②當2<x<4時,如圖2,設(shè)PM,PN分別交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由題意知△PEF∽△ABC,利用相似三角形的性質(zhì)即可求得.
(2)利用分類討論的思想,先求的直線BC與⊙O相切時,x的值,然后得到相交,相離時x的取值范圍.
試題解析:(1)i.如圖1,
由軸對稱性質(zhì)知:AM=PM,∠AMN=∠PMN,
又MN∥BC,
∴∠PMN=∠BPM,∠AMN=∠B,
∴∠B=∠BPM,
∴AM=PM=BM,
∴點M是AB中點,即當x=AB=2時,點P恰好落在邊BC上.
ii.以下分兩種情況討論:
①當0<x≤2時,
∵MN∥BC,
∴△AMN∽△ABC,
∴,
∴,
∴AN= ,
△MNP與梯形BCNM重合的面積為△MNP的面積,
∴,
②當2<x<4時,如圖2,
設(shè)PM,PN分別交BC于E,F,
由(2)知ME=MB=4-x,
∴PE=PM-ME=x-(4-x)=2x-4,
由題意知△PEF∽△ABC,
∴,
∴S△PEF=(x-2)2,
∴y=S△PMN-S△PEF=,
∵當0<x≤2時,y=x2,
∴易知y最大=,
又∵當2<x<4時,y=,
∴當x=時(符合2<x<4),y最大=2,
綜上所述,當x=時,重疊部分的面積最大,其值為2.
(2))如圖3,
設(shè)直線BC與⊙O相切于點D,連接AO,OD,則AO=OD=MN.
在Rt△ABC中,BC==5;
由(1)知△AMN∽△ABC,
∴,即,
∴MN=x
∴OD=x,
過M點作MQ⊥BC于Q,則MQ=OD=x,
在Rt△BMQ與Rt△BCA中,∠B是公共角,
∴△BMQ∽△BCA,
∴,
∴BM= ,AB=BM+MA=x+x=4
∴x=,
∴當x=時,⊙O與直線BC相切;
當x<時,⊙O與直線BC相離;
x>時,⊙O與直線BC相交.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+x+4交x軸于點A、B,交y軸于點C,連接AC、BC.
(1)求交點A、B的坐標以及直線BC的解析式;
(2)如圖1,動點P從點B出發(fā)以每秒5個單位的速度向點O運動,過點P作y軸的平行線交線段BC于點M,交拋物線于點N,過點N作NC⊥BC交BC于點K,當△MNK與△MPB的面積比為1:2時,求動點P的運動時間t的值;
(3)如圖2,動點P 從點B出發(fā)以每秒5個單位的速度向點A運動,同時另一個動點Q從點A出發(fā)沿AC以相同速度向終點C運動,且P、Q同時停止,分別以PQ、BP為邊在x軸上方作正方形PQEF和正方形BPGH(正方形頂點按順時針順序),當正方形PQEF和正方形BPGH重疊部分是一個軸對稱圖形時,請求出此時軸對稱圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市政府建設(shè)一項水利工程,某運輸公司承擔運送總量為106m3的土石方任務,該公司有甲、乙兩種型號的卡車共100輛,甲型車平均每天可以運送土石方80m3,乙型車平均每天可以運送土石方120m3,計劃100天完成運輸任務.
(1)該公司甲、乙兩種型號的卡車各有多少臺?
(2)如果該公司用原有的100輛卡車工作了40天后,由于工程進度的需要,剩下的所有運輸任務必須在50天內(nèi)完成,在甲型卡車數(shù)量不變情況下,公司至少應增加多少輛乙型卡車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用文字語言敘述下列代數(shù)式的意義:
(1)n表示整數(shù),n(n+1)(n+2)表示___________________________________.
(2)3x+5y表示____________________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家商店將某種服裝按成本價提高40%后標價,又以8折優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是( )
A.120元
B.125元
C.135元
D.140元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師在黑板上寫了一個等式:(a+3)x=4(a+3).王聰說x=4,劉敏說不一定,當x≠4時,這個等式也可能成立.你同意誰的觀點?請用等式的基本性質(zhì)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com