【題目】如圖,在平面角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點P,點M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點k,連接KN,在平面內(nèi)有一點Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標(biāo).
【答案】(1)拋物線C1:解析式為y=x2+x﹣1;(2)MN=t2+2;(3)t的值為1或0;(4)滿足條件的Q點坐標(biāo)為:(0,2)、(﹣1,3)、(,)、(,)
【解析】(1)利用待定系數(shù)法進(jìn)行求解即可;
(2)把x=t代入函數(shù)關(guān)系式相減即可得;
(3)根據(jù)圖形分別討論∠ANM=90°、∠AMN=90°時的情況即可得;
(4)根據(jù)題意畫出滿足條件圖形,可以找到AN為△KNP對稱軸,由對稱性找到第一個滿足條件Q,再通過延長和圓的對稱性找到剩余三個點,利用勾股定理進(jìn)行計算.
(1)∵拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),
∴,解得:,
∴拋物線C1:解析式為y=x2+x﹣1;
(2)∵動直線x=t與拋物線C1交于點N,與拋物線C2交于點M,
∴點N的縱坐標(biāo)為t2+t﹣1,點M的縱坐標(biāo)為2t2+t+1,
∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;
(3)共分兩種情況
①當(dāng)∠ANM=90°,AN=MN時,由已知N(t,t2+t﹣1),A(﹣2,1),
∴AN=t﹣(﹣2)=t+2,
∵MN=t2+2,
∴t2+2=t+2,
∴t1=0(舍去),t2=1,
∴t=1;
②當(dāng)∠AMN=90°,AN=MN時,由已知M(t,2t2+t+1),A(﹣2,1),
∴AM=t﹣(﹣2)=t+2,
∵MN=t2+2,
∴t2+2=t+2,
∴t1=0,t2=1(舍去),
∴t=0,
故t的值為1或0;
(4)由(3)可知t=1時M位于y軸右側(cè),根據(jù)題意畫出示意圖如圖:
易得K(0,3),B、O、N三點共線,
∵A(﹣2,1),N(1,1),P(0,﹣1),
∴點K、P關(guān)于直線AN對稱,
設(shè)⊙K與y軸下方交點為Q2,則其坐標(biāo)為(0,2),
∴Q2與點O關(guān)于直線AN對稱,
∴Q2是滿足條件∠KNQ=∠BNP,
則NQ2延長線與⊙K交點Q1,Q1、Q2關(guān)于KN的對稱點Q3、Q4也滿足∠KNQ=∠BNP,
由圖形易得Q1(﹣1,3),
設(shè)點Q3坐標(biāo)為(a,b),由對稱性可知Q3N=NQ1=BN=2,
由∵⊙K半徑為1,
∴,解得:,,
同理,設(shè)點Q4坐標(biāo)為(a,b),由對稱性可知Q4N=NQ2=NO=,
∴,解得:,,
∴滿足條件的Q點坐標(biāo)為:(0,2)、(﹣1,3)、(,)、(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的課外閱讀情況,對部分學(xué)生進(jìn)行了調(diào)查,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上信息解答下列問題:
(1)本次調(diào)查活動采取了 調(diào)查方式,樣本容量是 .
(2)圖2中C的圓心角度數(shù)為 度,補(bǔ)全圖1的頻數(shù)分布直方圖.
(3)該校有900名學(xué)生,估計該校學(xué)生平均每天的課外閱讀時間不少于50min的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線a交AB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第 n個圖形需要黑色棋子的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=(k﹣1)x+k+1和直線l2:y=kx+k+2,其中k為不小于2的自然數(shù).
(1)當(dāng)k=2時,直線l1、l2與x軸圍成的三角形的面積S2=______;
(2)當(dāng)k=2、3、4,……,2018時,設(shè)直線l1、l2與x軸圍成的三角形的面積分別為S2,S3,S4,……,S2018,則S2+S3+S4+……+S2018=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C(0,﹣),OA=1,OB=4,直線l過點A,交y軸于點D,交拋物線于點E,且滿足tan∠OAD=.
(1)求拋物線的解析式;
(2)動點P從點B出發(fā),沿x軸正方形以每秒2個單位長度的速度向點A運動,動點Q從點A出發(fā),沿射線AE以每秒1個單位長度的速度向點E運動,當(dāng)點P運動到點A時,點Q也停止運動,設(shè)運動時間為t秒.
①在P、Q的運動過程中,是否存在某一時刻t,使得△ADC與△PQA相似,若存在,求出t的值;若不存在,請說明理由.
②在P、Q的運動過程中,是否存在某一時刻t,使得△APQ與△CAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,
(1)求點C到直線AB的距離;
(2)求海警船到達(dá)事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知海島A的周圍6km的范圍內(nèi)有暗礁,一艘海輪在B處測得海島A在北偏東30°的方向;向正北方向航行6km到達(dá)C處,又測得該島在北偏東60°的方向,如果海輪不改變航向,繼續(xù)向正北航行,有沒有觸礁的危險?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com