【題目】我們知道,任意一個正整數(shù)n都可以進(jìn)行這樣的分解:pq是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×qn的完美分解.并規(guī)定:

例如18可以分解成1×18,2×93×6,因?yàn)?/span>1819263,所以3×618的完美分解,所以F18)=

1F13)= F24)= ;

2)如果一個兩位正整數(shù)t,其個位數(shù)字是a,十位數(shù)字為,交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;

3)在(2)所得“和諧數(shù)”中,求Ft)的最大值.

【答案】1,(2)所以和諧數(shù)為1526,37,4859;(3Ft)的最大值是

【解析】

(1)根據(jù)題意,按照新定義的法則計算即可.

(2)根據(jù)新定義的和諧數(shù)定義,將數(shù)用a,b表示列出式子解出即可.

(3)根據(jù)(2)中計算的結(jié)果求出最大即可.

解:(1F13)=,F24)=;

2)原兩位數(shù)可表示為

新兩位數(shù)可表示為

b為正整數(shù) )

b=2,a=5; b=3,a=6, b=4,a=7,

b=5,a=8 b=6,a=9

所以和諧數(shù)為15,26,3748,59

(3)所有“和諧數(shù)”中,Ft)的最大值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)12,3,4,5,……排列成如圖所示的數(shù)陣:

1)十字框中五個數(shù)的和與框正中心的數(shù)11有什么關(guān)系?

2)若將十字框上下、左右平移,可框住另外五個數(shù),這五個數(shù)的和與框正中心的數(shù)還有這種規(guī)律嗎?請說明理由;

3)十字框中五個數(shù)的和能等于180嗎?若能,請寫出這五個數(shù);若不能,請說明理由;

4)十字框中五個數(shù)的和能等于2020嗎?若能,請寫出這五個數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請將條形統(tǒng)計圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加校籃球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CDy軸相交于點(diǎn)E

(1)直線CD的函數(shù)表達(dá)式為______(直接寫出結(jié)果)

(2)x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

(3)若點(diǎn)Q為線段DE上的一個動點(diǎn),連接BQ.點(diǎn)Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB

1)求證:P為線段AB的中點(diǎn);

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的同一點(diǎn),且拋物線L的頂點(diǎn)在直線l上,則稱次拋物線L與直線l具有一帶一路關(guān)系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

(1)若路線”l的表達(dá)式為y=2x﹣4,它的帶線”L的頂點(diǎn)的橫坐標(biāo)為﹣1,帶線”L的表達(dá)式;

(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關(guān)系,求m,n的值;

(3)設(shè)(2)中的帶線”L與它的路線”ly軸上的交點(diǎn)為A.已知點(diǎn)P帶線”L上的點(diǎn),當(dāng)以點(diǎn)P為圓心的圓與路線”l相切于點(diǎn)A時,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電視熱播節(jié)目最強(qiáng)大腦激發(fā)了學(xué)生的思考興趣,為滿足學(xué)生的需求,某學(xué)校抽取部分學(xué)生舉行最強(qiáng)大腦選拔賽,針對競賽成績分成以下六個等級A:0~50分;B:51~60分;C:61~70分;D:71~80分;E:81~90分;F:91~100分,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)此次競賽抽取的總?cè)藬?shù)為   ,請補(bǔ)全條形統(tǒng)計圖;

(2)若全市約有3萬名在校學(xué)生,試估計全市學(xué)生中競賽成績在71~90分的人數(shù)約有多少?

(3)若在此次接受調(diào)查的學(xué)生中,隨機(jī)抽查一人,則此人的成績在80分以上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“校園獻(xiàn)愛心”活動.準(zhǔn)備向西部山區(qū)學(xué)校捐贈男、女兩種款式的書包,已知男款書包單價/個,女款書包單價/.

原計劃募捐元,恰好可購買兩種款式的書包個,問兩種款式的書包各買多少個?

在捐款活動中,師生積極性高,實(shí)際捐款額和書包數(shù)量都高于原計劃.快遞公司將這些書包裝箱運(yùn)送,其中每箱書包數(shù)量相同.第一次他們領(lǐng)走這批的,結(jié)果裝了箱還多個書包;第二次他們把余下的領(lǐng)走.連同第一次裝箱剩下的個書包一起,剛好裝了.:實(shí)際購買書包共多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點(diǎn)與數(shù)-2表示的點(diǎn)重合,則數(shù)軸上數(shù)-4,表示的點(diǎn)與數(shù)4表示的點(diǎn)重合,根據(jù)你對例題的理解,解答下列問題:

若數(shù)軸上數(shù)-3表示的點(diǎn)與數(shù)1表示的點(diǎn)重合.(請依據(jù)此情境解決下列問題)

①則數(shù)軸上數(shù)3表示的點(diǎn)與數(shù) 表示的點(diǎn)重合.

②若點(diǎn)到與原點(diǎn)的距離是5個單位長度,并且,兩點(diǎn)經(jīng)折疊后重合,則點(diǎn)點(diǎn)表示的數(shù)是 .

③若數(shù)軸上,兩點(diǎn)之間的距離為2018,并且,兩點(diǎn)經(jīng)折疊后重合,如果點(diǎn)表示的數(shù)比點(diǎn)表示的數(shù)大,則點(diǎn)表示的數(shù)是 ,則點(diǎn)表示的數(shù)是 .

查看答案和解析>>

同步練習(xí)冊答案