【題目】將一副三角尺(在RtABC中,∠ACB=90°,B=60°;在RtDEF中,∠EDF=90°,E=45°)如圖1擺放,點(diǎn)DAB邊的中點(diǎn),DEAC于點(diǎn)P,DF經(jīng)過點(diǎn)C,且BC=2.

(1)求證:ADCAPD;

(2)APD的面積;

(3)如圖2,將DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α(0°<α<60°),此時(shí)的等腰直角三角尺記為DE′F′,DE′AC于點(diǎn)M,DF′BC于點(diǎn)N,試判斷的值是否隨著α的變化而變化?如果不變,請(qǐng)求出的值;反之,請(qǐng)說明理由.

【答案】(1)見解析;(2) ;(3) 不會(huì)隨著α的變化而變化

【解析】

(1)先判斷出BCD是等邊三角形,進(jìn)而求出∠ADP=ACD,即可得出結(jié)論;
(2)求出PH,最后用三角形的面積公式即可得出結(jié)論;
(3)只要證明DPMDCN相似,再根據(jù)相似三角形對(duì)應(yīng)邊成比例即可證明.

1)證明:∵△ABC是直角三角形,點(diǎn)DAB的中點(diǎn),

AD=BD=CD,

∵在BCD中,BC=BD且∠B=60°,

∴△BCD是等邊三角形,

∴∠BCD=BDC=60°,

∴∠ACD=90°-∠BCD=30°,

ADE=180°-∠BDC-∠EDF=30°,

ADCAPD中,∠A=A,∠ACD=ADP,

∴△ADC∽△APD.

2)由(1)已得BCD是等邊三角形,∴BD=BC=AD=2,

過點(diǎn)PPHAD于點(diǎn)H,

∵∠ADP=30°=90°-∠B=A

AH=DH=1, tanA=,

PH=.

∴△APD的面積=AD·PH=

3的值不會(huì)隨著α的變化而變化.

∵∠MPD=A+ADE=30°+30°=60°,∴∠MPD=BCD=60°,

MPDNCD中,∠MPD=NCD=60°,∠PDM=CDN=α,

∴△MPD∽△NCD,∴,

由(1)知AD=CD,∴,

由(2)可知PD=2AH,∴PD=

的值不會(huì)隨著α的變化而變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、分別在、上,連接,平分于點(diǎn),

1平行嗎?并說明理由;

2)寫出圖中與相等的角,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,上一點(diǎn),,,垂足為,.若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x32x軸交于A、B兩點(diǎn)(點(diǎn)AB的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)D

1)求點(diǎn)AB、D三點(diǎn)的坐標(biāo);

2)連結(jié)CDx軸于G,過原點(diǎn)OOECD,垂足為H,交拋物線對(duì)稱軸于E,求出E點(diǎn)的縱坐標(biāo);

3)以②中點(diǎn)E為圓心,1為半徑畫圓,在對(duì)稱軸右側(cè)的拋物線上有一動(dòng)點(diǎn)P,過P作⊙E的切線,切點(diǎn)為Q,當(dāng)PQ的長最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與ABC相似,則點(diǎn)E的坐標(biāo)不可能是

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,平行四邊形ABCD中,AE:EB=1:2.

(1)求AE:DC的值.

(2)△AEF△CDF相似嗎?若相似,請(qǐng)說明理由,并求出相似比.

(3)如果SAEF=6cm2,求SCDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°DAB延長線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連結(jié)AE、DEDC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案