【題目】如圖,將一個智屏手機抽象成一個的矩形,其中,,然后將它圍繞頂點逆時針旋轉一周,旋轉過程中、、的對應點依次為、、,則當為直角三角形時,若旋轉角為,則的大小為______.

【答案】

【解析】

根據(jù)題中得到∠ADE=30°,則∠DAE=60°;這是有兩種情況,一種AE在AD的左側,一種AE在AD的右側;另外,當旋轉180°,AE和AB共線時,∠EAD=90°,△ADE也是直角三角形.

解:要使△ADE為直角三角形,由于AE=8,AD=16,即只需滿足∠ADE=30°即可.

當∠DAE=30°,則∠DAE=60°

當AE在AD的左側時,旋轉了30°;

當AE在AD的右側,即和BA的延長線的夾角為30°,即旋轉了150°.

另外,當旋轉到AEAB延長線重合時,∠DAE=90°,三角形ADE也是直角三角形;

所以答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,運載火箭從地面L處垂直向上發(fā)射,當火箭到達A點時,從位于地面R處的雷達測得AR的距離是40km,仰角是30°,n秒后,火箭到達B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義符號的含義為:當時,;當時,如:,=的最大值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,AB=BC,∠ABC=60°,∠ADC=120°,求證:BD=AD+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點表示的數(shù)為9,是數(shù)軸上一點且.動點從點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為 ()秒.

發(fā)現(xiàn):

(1)寫出數(shù)軸上點表示的數(shù) ,點表示的數(shù) (用含的代數(shù)式表示);

探究:

(2)動點從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動, 若點、同時出發(fā),問為何值時點追上點?此時點表示的數(shù)是多少?

(3)若是線段靠近點的三等分點,是線段靠近點的三等分點.點在運動的過程中, 線段的長度是否發(fā)生變化?在備用圖中畫出圖形,并說明理由.

拓展:

(4)若點是數(shù)軸上點,點表示的數(shù)是,請直接寫:的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,D、E分別為AB、AC上的點,∠BDECED的平分線分別交BC于點F、G,EGAB.若∠BGE=110°,則∠BDF的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[問題背景]三邊的長分別為,求這個三角形的面積.

小輝同學在解這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中作出格點(三個頂點都在小正方形的頂點處),如圖1所示,這樣不需要作的高,借用網(wǎng)格就能計算出的面積為_

[思維拓展]我們把上述求面積的方法叫做構圖法,若三邊的長分別為,請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為)畫出相應的,并求出它的面積:

[探索創(chuàng)新]三邊的長分別為(其中),請利用構圖法求出這個三角形的面積(畫出圖形并計算面積)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正方形ABCD中,點EBC邊上任意一點(點E不與B,C重合),點F在線段AE上,過點F的直線,分別交AB、CD于點MN

1)如圖,求證:;

2)如圖,當點FAE中點時,連接正方形的對角線BD,MNBD交于點G,連接BF,求證:;

3)如圖,在(2)的條件下,若,求BM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯的題目進行整理、分析、改正” (選項為:很少、有時、常常、總是)的調查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題:

(1)該調查的樣本容量為_______,________ %,________%“很少”對應扇形的圓心角為_____________;

(2)請補全條形統(tǒng)計圖;

(3)若該校共有3500名學生,請你估計其中“總是”對錯題進行整理、分析、改正的學生有多少名?

查看答案和解析>>

同步練習冊答案