【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AD交AB于E,EF∥BC交AC于F.
(1)求證:△ACD∽△ADE;
(2)求證:AD2=ABAF;
(3)作DG⊥BC交AB于G,連接FG,若FG=5,BE=8,直接寫(xiě)出AD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)根據(jù)兩角對(duì)應(yīng)相等兩三角形相似即可證明.
(2)證明△BAD∽△DAF可得結(jié)論.
(3)求出AB,AF,代入AD2=ABAF,即可解決問(wèn)題.
(1)證明:∵DA平分∠BAC,
∴∠CAD=∠DAE,
∵DE⊥AD,
∴∠ADE=∠C=90°,
∴△ACD∽△ADE.
(2)證明:連接DF.
∵EF∥BC,
∴∠AFE=∠C=90°,∠AEF=∠B,
∵∠ADE=∠AFE=90°,
∴A,E,D,F四點(diǎn)共圓,
∴∠ADF=∠AEF,
∴∠B=∠ADF,
∴∠DAB=∠DAF,
∴△BAD∽△DAF,
∴,
∴AD2=ABAF.
(3)設(shè)DG交EF于O.
∵DG⊥BC,AC⊥BC,
∴DG∥AC,
∴∠ADG=∠DAC=∠DAG,
∴AG=GD,
∵∠AED+∠EAD=90°,∠EDG+∠ADG=90°,
∴∠GED=∠GDE,
∴DG=EG=AG,
∵∠AFE=90°,
∴FG=EG=AG=DG=5,
∵OE∥BD,
∴,
∴,
∴OG=,
∴OG∥AF.EG=AG,
∴OE=OF,
∴AF=2OG=,
∴AD2=ABAF=18×,
∵AD>0,
∴AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形沿對(duì)角線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),與相交于點(diǎn),若,,則的長(zhǎng)度是( )
A.1B.2C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),下列說(shuō)法:
①若b2﹣4ac=0,則拋物線的頂點(diǎn)一定在x軸上;
②若b=a+c,則拋物線必經(jīng)過(guò)點(diǎn)(﹣1,0);
③若a<0,且一元二次方程ax2+bx+c=0有兩根x1,x2(x1<x2),則ax2+bx+c<0的解集為x1<x<x2;
④若,則方程ax2+bx+c=0有一根為﹣3.
其中正確的是_____(把正確說(shuō)法的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+4(a≠0)的對(duì)稱(chēng)軸為直線x=3,拋物線與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(8,0).
(1)求拋物線的解析式;
(2)點(diǎn)M為線段BC上方拋物線上的一點(diǎn),點(diǎn)N為線段BC上的一點(diǎn),若MN∥y軸,求MN的最大值;
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q使得△ACQ為等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點(diǎn)P從A出發(fā),以每秒2厘米的速度向B運(yùn)動(dòng),點(diǎn)Q從C同時(shí)出發(fā),以每秒3厘米的速度向A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也相應(yīng)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
⑴用含t的代數(shù)式表示:AP= ,AQ= .
⑵當(dāng)以A,P,Q為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x軸,y軸上,點(diǎn)A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動(dòng),如果PQ=,那么當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),∠BAC的平分線AD交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)如果∠BAC=60°,AD=4,求AC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,圓心O在AB上,過(guò)點(diǎn)B作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com