【題目】反比例函數(shù)y=(1≤x≤8)的圖象記為曲線C1C1沿y軸翻折,得到曲線C2,直線y=-x+b C1 ,C2一共只有兩個(gè)公共點(diǎn),則b的取值范圍是______________________

【答案】

【解析】分析作出大致圖象,分兩種情況討論①當(dāng)直線y=x+b與反比例函數(shù)y=只有一個(gè)交點(diǎn)時(shí),解方程組得b=;②當(dāng)直線y=x+b過(guò)(-1,8)時(shí),直線剛好與C1 ,C2有三個(gè)公共點(diǎn),由此得到b的值,把此直線往上平移,直線與C2沒有公共點(diǎn),與C1有兩個(gè)公共點(diǎn),直到直線過(guò)(18),解得此時(shí)b的值,即可得出結(jié)論.

詳解:如圖直線y=x+b與直線ly=-x平行分兩種情況討論

①當(dāng)直線y=x+b與反比例函數(shù)y=只有一個(gè)交點(diǎn)時(shí),解方程組 得:,∴,∴△=b2-32=0,解得:b(負(fù)數(shù)舍去),∴b=,∴當(dāng)b=,直線y=x+bC1 ,C2一共只有兩個(gè)公共點(diǎn).

②當(dāng)直線y=x+b過(guò)(-1,8)時(shí),直線剛好與C1 ,C2有三個(gè)公共點(diǎn),此時(shí)8=1+b,解得:b=7,此時(shí)直線為y=x+7,把此直線往上平移,直線與C2沒有公共點(diǎn),與C1有兩個(gè)公共點(diǎn),直到直線過(guò)(1,8),此時(shí)8=-1+b,解得:b=9.∴7b9

綜上所述:b的取值范圍是:b=7b9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBCD,AD=BDAC=BE

1)求證:∠BED=C;

2)猜想并說(shuō)明BEAC有什么數(shù)量和位置關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點(diǎn)ENBC上,則∠EAN=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們經(jīng)常遇到需要分類的問(wèn)題,畫“樹形圖”可以幫我們不重復(fù)、不遺漏地分類.

(例題)在等腰三角形ABC中,若A=80°,求B的度數(shù).

∠A、∠B都可能是頂角或底角,因此需要分成如圖1所示的3類,這樣的圖就是樹形圖,據(jù)此可求出∠B=

(應(yīng)用)

(1)已知等腰三角形ABC周長(zhǎng)為19,AB=7,仿照例題畫出樹形圖,并直接寫出BC的長(zhǎng)度;

(2)將一個(gè)邊長(zhǎng)為5、12、13的直角三角形拼上一個(gè)三角形后可以拼成一個(gè)等腰三角形,圖2就是其中的一種拼法,請(qǐng)你畫出其他所有可能的情形,并在圖上標(biāo)出所拼成等腰三角形的腰的長(zhǎng)度.(選用圖3中的備用圖畫圖,每種情形用一個(gè)圖形單獨(dú)表示,并用①、②、③…編號(hào),若備用圖不夠,請(qǐng)自己畫圖補(bǔ)充)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線經(jīng)過(guò)點(diǎn)A,0),B0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拓展與探索:如圖,在正△ABC中,點(diǎn)EAC上,點(diǎn)DBC的延長(zhǎng)線上.

(1)如圖1,AEECCD,求證:BEED;

(2)如圖2,若EAC上異于A、C的任一點(diǎn),AECD,(1)中結(jié)論是否仍然成立?為什么?

(3)EAC延長(zhǎng)線上一點(diǎn),且AECD,試探索BEED間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,PN分別為DE,DCBC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BDCE,判斷PMN的形狀,并說(shuō)明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn).

(1)判斷頂點(diǎn)是否在直線上,并說(shuō)明理由.

(2)如圖1,若二次函數(shù)圖象也經(jīng)過(guò)點(diǎn),,且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)內(nèi),若點(diǎn),都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案