【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類(lèi)選課意向進(jìn)行了抽樣調(diào)查(每人選報(bào)一類(lèi)),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)求扇形統(tǒng)計(jì)圖中m的值;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)已知該校有800名學(xué)生,計(jì)劃開(kāi)設(shè)實(shí)踐活動(dòng)類(lèi)課程每班安排人,問(wèn)學(xué)校開(kāi)設(shè)多少個(gè)實(shí)踐活動(dòng)類(lèi)課程的班級(jí)比較合理?

【答案】(1)m的值為20;

(2)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;

(3)學(xué)校開(kāi)設(shè)10個(gè)“實(shí)踐活動(dòng)類(lèi)”課程的班級(jí)比較合理.

【解析】1)根據(jù)C類(lèi)人數(shù)有15人,占總?cè)藬?shù)的25%可得出總?cè)藬?shù),求出A類(lèi)人數(shù),進(jìn)而可得出結(jié)論;
2)根據(jù)A類(lèi)人數(shù)補(bǔ)全圖形即可;
3)求出實(shí)踐活動(dòng)類(lèi)的總?cè)藬?shù),進(jìn)而可得出結(jié)論.

【解答】解:(1)總?cè)藬?shù)=15÷25%=60(人).
A類(lèi)人數(shù)=60-24-15-9=12(人).
12÷60=0.2=20%,
m=20
2)條形統(tǒng)計(jì)圖如圖;

3800×25%=200,200÷20=10,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:千克)

3

2

1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?

(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過(guò)或不足多少千克?

(3)若白菜每千克售價(jià)2.6元,則出售這20筐白菜可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果水位升高3m時(shí)水位變化記作+3m,那么水位下降3m時(shí)水位變化記作 ( )

A. -3m B. 3 m C. 6 m D. -6 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和是900°,這個(gè)多邊形的邊數(shù)是( 。

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, , 軸, .

⑴.求點(diǎn)的坐標(biāo):

⑵.四邊形的面積四邊形

⑶. 在軸上是否存在點(diǎn),使 = 四邊形;若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式不能用公式法分解因式的是( 。

A. x2-6x+9B. -x2+y2C. x2+2x+4D. - x2+2xy-y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.

(1)求直線AB的解析式;

(2)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的頂點(diǎn)坐標(biāo)為(1,4),且其圖象經(jīng)過(guò)點(diǎn)(-2,-5),求此二次函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點(diǎn)M、N,點(diǎn)A、B分別在y軸、x軸上,且∠B=60°,AB=2,將△ABO繞原點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng)一周,當(dāng)AB與直線MN平行時(shí)點(diǎn)A的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案