【題目】如圖,在⊙O中,將沿弦BC所在直線折疊,折疊后的弧與直徑AB相交于點D,連接CD.
(1)若點D恰好與點O重合,則∠ABC= °;
(2)延長CD交⊙O于點M,連接BM.猜想∠ABC與∠ABM的數(shù)量關(guān)系,并說明理由.
【答案】(1) 30;(2) ∠ABM=2∠ABC,理由見解析.
【解析】
(1)根據(jù)折疊的性質(zhì)和圓周角定理解答即可;
(2)作點D關(guān)于BC的對稱點D',利用對稱的性質(zhì)和圓周角定理解答即可.
(1)∵由折疊可知:∠OBC=∠CBD,
∵點D恰好與點O重合,
∴∠COD=60°,
∴∠ABC=∠OBC=;
故答案為:30;
(2)∠ABM=2∠ABC,理由如下:
作點D關(guān)于BC的對稱點D',連接CD',BD',
由對稱可得∠DBC=∠D'BC,DC=D'C,
連接CO,D'O,AC,
∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,
∴∠AOC=∠D'OC,
∴AC=D'C,
∵DC=D'C,
∴AC=DC,
∴∠CAD=∠CDA,
∵AB是直徑,
∴∠ACB=90°,
∴∠CAD+∠ABC=90°,
設(shè)∠ABC=α,則∠CAD=∠CDA=90°﹣α,
∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,
即∠ACD=2∠ABC,
∵∠ABM=∠ACD,
∴∠ABM=2∠ABC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,以AB為一邊作等邊△ABE,使點E落在正方形ABCD的內(nèi)部,連接AC交BE于點F,連接CE、DE,則下列說法中:①△ADE≌△BCE;②∠ACE=30°;③AF=CF;④ =2+,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ OAB 是腰長為 1 的等腰直角三角形, OAB 90°,延長OA 至 B1 ,使 AB1 OA ,以OB1 為底,在△ OAB 外側(cè)作等腰直角三角形OA1B1 ,再延長OA1 至 B2 , 使 A1B2 OA1 ,以OB2 為底,在△ OA1B1 外側(cè)作等腰直角三角形OA2 B2 ,……,按此規(guī)律作等腰直角三角形OAn Bn ( n 1 , n 為正整數(shù)),回答下列問題:
(1) A3B3 的長是_____________;(2)△ OA2020 B2020 的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=40°,則∠CDE的度數(shù)為( 。
A.50°B.40°C.60°D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將繞點順時針旋轉(zhuǎn)到的位置,點、分別落在點、處,點在軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,依次進行下去….若點,,則點的坐標為( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】小澤和小帥兩同學分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會實踐活動.如圖折線OAB和線段CD分別表示小澤和小帥離甲地的距離y(單位:千米)與時間x(單位:小時)之間函數(shù)關(guān)系的圖象.根據(jù)圖中提供的信息,解答下列問題:
(1)小帥的騎車速度為 千米/小時;點C的坐標為 ;
(2)求線段AB對應的函數(shù)表達式;
(3)當小帥到達乙地時,小澤距乙地還有多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com