【題目】如圖,小明從家到達(dá)學(xué)校要穿過一個居民小區(qū),小區(qū)的道路均是正南或正東方向,則小明走下列線路不能到達(dá)學(xué)校的是(  )

A. (0,4)→(0,0)→(4,0)

B. (0,4)→(4,4)→(4,0)

C. (0,4)→(3,4)→(4,2)→(4,0)

D. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)

【答案】C

【解析】

根據(jù)點的坐標(biāo)的定義結(jié)合圖形對各選項分析判斷即可得解.

A、(0,4)→(0,0)→(4,0)都能到達(dá),故本選項錯誤;

B、(0,4)→(4,4)→(4,0)都能到達(dá),故本選項錯誤;

C、(3,4)→(4,2)不都能到達(dá),故本選項正確;

D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到達(dá),故本選項錯誤.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形(陰影部分)和一個長方形(陰影部分)得到一個字圖案,設(shè)剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.

(1)用含a、x、y的式子表示的面積;

(2)當(dāng)a=12,x=7,y=4時,求該圖形面積的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣6x+c與x軸交于點A、B(5,0),與y軸交于點C(0,5),點P是拋物線上的動點,設(shè)點P的橫坐標(biāo)為t,連接PB、PC,PC與x軸交于點D,過點P作y軸的平行線交x軸于點H、交直線BC于點E.

(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)若點P在第四象限,則△BPC的面積有值(填“最大”或“最小”),并求出其值;
(3)當(dāng)t<5時,△BPE能否為等腰三角形?若能,請求出此時點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】政府計劃投資14萬億元實施東進戰(zhàn)略.為了解民對東進戰(zhàn)略的關(guān)注情況,佳佳隨機采訪部分民,并對采訪情況制作了統(tǒng)計圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

m

0.1

B.一般關(guān)注

200

0.5

C.不關(guān)注

60

n

D.不知道

100

0.25

(1)采訪總?cè)藬?shù)為__ __人,m=__ __,n=__ __;

(2)補全統(tǒng)計圖;

(3)估計在30 000名民中高度關(guān)注東進戰(zhàn)略的人數(shù)約為 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD被直線EF所截,交點分別為G,H, ∠CHG=∠DHG=∠AGE.

(1)CDEF有怎樣的位置關(guān)系?請說明理由.

(2)求∠CHG的同位角、內(nèi)錯角、同旁內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,動點P從點A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止;動點Q從A出發(fā),以1cm/s的速度沿邊AD勻速運動到D終止,若P、Q兩點同時出發(fā),運動時間為ts,△APQ的面積為Scm2 . S與t之間函數(shù)關(guān)系的圖象如圖2所示.

(1)求圖2中線段FG所表示的函數(shù)關(guān)系式;
(2)當(dāng)動點P在邊AB運動的過程中,若以C、P、Q為頂點的三角形是等腰三角形,求t的值;
(3)是否存在這樣的t,使PQ將正方形ABCD的面積恰好分成1:3的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=kx+k與y= (k≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案