【題目】如圖1,四邊形ABCD是正方形,動點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動到D終止;動點(diǎn)Q從A出發(fā),以1cm/s的速度沿邊AD勻速運(yùn)動到D終止,若P、Q兩點(diǎn)同時出發(fā),運(yùn)動時間為ts,△APQ的面積為Scm2 . S與t之間函數(shù)關(guān)系的圖象如圖2所示.
(1)求圖2中線段FG所表示的函數(shù)關(guān)系式;
(2)當(dāng)動點(diǎn)P在邊AB運(yùn)動的過程中,若以C、P、Q為頂點(diǎn)的三角形是等腰三角形,求t的值;
(3)是否存在這樣的t,使PQ將正方形ABCD的面積恰好分成1:3的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
【答案】
(1)
解:由題意,可知題圖2中點(diǎn)E表示點(diǎn)P運(yùn)動至點(diǎn)B時的情形,
所用時間為2s,則正方形的邊長AB=2×2=4cm.
點(diǎn)Q運(yùn)動至點(diǎn)D所需時間為:4÷1=4s,點(diǎn)P運(yùn)動至終點(diǎn)D所需時間為12÷2=6s.
因此在FG段內(nèi),點(diǎn)Q運(yùn)動至點(diǎn)D停止運(yùn)動,點(diǎn)P在線段CD上繼續(xù)運(yùn)動,且時間t的取值范圍為4≤t≤6.
故S= ×4×(12﹣2t)=﹣4t+24,
∴FG段的函數(shù)表達(dá)式為S=﹣4t+24(4≤t≤6).
(2)
解:①若CP=CQ,則DQ=PB,顯然不成立
②若PC=PQ,則(4﹣2t)2+42=5t2,解得 , (舍去)
③若QC=QP,則(4﹣t)2+42=5t2,解得t1=2,t2=﹣4(舍去)
綜上所述,當(dāng) 或t=2時,以C、P、Q為頂點(diǎn)的三角形是等腰三角形.
(3)
解:假設(shè)存在這樣的t,使PQ將正方形ABCD的面積恰好分成1:3的兩部分.
易得正方形ABCD的面積為16.
①當(dāng)點(diǎn)P在AB上運(yùn)動時,PQ將正方形ABCD分成△APQ和五邊形PBCDQ兩部分,
如圖3所示,根據(jù)題意,得 ,解得t=2;
②當(dāng)點(diǎn)P在BC上運(yùn)動時,PQ將正方形ABCD分為梯形ABPQ和梯形PCDQ兩部分,如圖4所示.根據(jù)題意,得 (2t﹣4+t)×4= ×16,
解得t= .
∴存在t=2和t= ,使PQ將正方形ABCD的面積恰好分成1:3的兩部分.
【解析】(1)函數(shù)圖象中線段FG,表示點(diǎn)Q運(yùn)動至終點(diǎn)D之后停止運(yùn)動,而點(diǎn)P在線段CD上繼續(xù)運(yùn)動的情形.求出S的表達(dá)式,并確定t的取值范圍;(2)分CP=CQ、PC=PQ、QC=QP三種情況討論即可確定答案;(3)當(dāng)點(diǎn)P在AB上運(yùn)動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,求出t的值;
當(dāng)點(diǎn)P在BC上運(yùn)動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,求出t的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值,以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥OD,OE平分∠AOF.
(1)∠BOD與∠DOF相等嗎?請說明理由.
(2)若∠DOF=∠BOE,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明從家到達(dá)學(xué)校要穿過一個居民小區(qū),小區(qū)的道路均是正南或正東方向,則小明走下列線路不能到達(dá)學(xué)校的是( )
A. (0,4)→(0,0)→(4,0)
B. (0,4)→(4,4)→(4,0)
C. (0,4)→(3,4)→(4,2)→(4,0)
D. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,邊 AC,BC 的垂直平分線的交點(diǎn) O 落在邊 AB 上,則△ABC 的形狀是( )
A. 鈍角三角形 B. 直角三角形 C. 銳角三角形 D. 任意三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=65°,AD 為 BC 邊上的高.
(1)求∠CAD 的度數(shù);
(2)若∠B=45°,AE 平分∠BAC,求∠EAD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點(diǎn)A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點(diǎn)B(1,3),將△ABC以點(diǎn)B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖象恰好過點(diǎn)D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=22.動點(diǎn)P從點(diǎn)A出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)____,點(diǎn)P表示的數(shù)____(用含t的代數(shù)式表示);
(2)若動點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,若點(diǎn)P、Q同時出發(fā),問點(diǎn)P運(yùn)動多少秒時追上點(diǎn)Q?(列一元一次方程解應(yīng)用題)
(3)若動點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,若點(diǎn)P、Q同時出發(fā),問 秒時P、Q之間的距離恰好等于2(直接寫出答案)
(4)思考在點(diǎn)P的運(yùn)動過程中,若M為AP的中點(diǎn),N為PB的中點(diǎn).線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整 .
(2)此次比賽有四名同學(xué)活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com