【題目】如圖,在△ABC中,AB=AC=13,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),已知B(-1,0),C(9,0),則點(diǎn)F的坐標(biāo)為______________.

【答案】(4,6)

【解析】如圖,延長(zhǎng)AFBC于點(diǎn)G.易證DF是△ABG的中位線,由三角形中位線定理可以求得點(diǎn)F的坐標(biāo).

解:如圖,延長(zhǎng)AFBC于點(diǎn)G.


B(-1,0),C(9,0),
BC=10.
AB=AC=13,DE是△ABC的中位線,FDE的中點(diǎn),
AGBC,則BG=CG=5.
G(4,0)
∴在直角△ABG中,由勾股定理得
AG==12.
F(4,6).
故答案是:(4,6).

“點(diǎn)睛”本題考查了三角形中位線定理和坐標(biāo)與圖形性質(zhì).利用勾股定理求得AG的長(zhǎng)度是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cmA=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;

(3)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長(zhǎng)為半徑畫(huà)圓心角為90°的扇形OEF,弧EF經(jīng)過(guò)點(diǎn)C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)分別為A(-2,2),B(0,5),C(0,2).

(1)畫(huà)△,使它與△ABC關(guān)于點(diǎn)C成中心對(duì)稱;

(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),畫(huà)出平移后對(duì)應(yīng)的

(3)若將繞某一點(diǎn)旋轉(zhuǎn)可得到,則旋轉(zhuǎn)中心的坐標(biāo)為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫(xiě)作法)

①在射線BM上作一點(diǎn)C,使AC=AB;

②作∠ABM 的角平分線交ACD點(diǎn);

③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數(shù)量關(guān)系,并證明之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)求線段MN的長(zhǎng)度;

(2)根據(jù)第(1)題的計(jì)算過(guò)程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長(zhǎng)度;

(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在山腳下的A處測(cè)得山頂N的仰角為45°,此時(shí),他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對(duì)著山頂前行110米到達(dá)B處,測(cè)得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個(gè)實(shí)數(shù)根x1和x2
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案