【題目】如圖所示,用一根長度為18米的原材料制作一個矩形窗戶邊框(即矩形ABFE和矩形DCFE),原材料剛好全部用完,設(shè)窗戶邊框AB長度為x米,窗戶總面積為S平方米(注:窗戶邊框粗細(xì)忽略不計).
(1)求S與x之間的函數(shù)關(guān)系式;
(2)若窗戶邊框AB的長度不少于2米,且邊框AB的長度小于BC的長度,求此時窗戶總面積S的最大值和最小值.
【答案】(1)S=﹣x2+9x;(2)窗戶總面積S的最大值是m2、最小值是12m2.
【解析】
(1)根據(jù)題意和圖形可以求得S與x的函數(shù)表達(dá)式;
(2)根據(jù)題意可以得到關(guān)于x的不等式,然后根據(jù)(1)中的函數(shù)解析式和二次函數(shù)的性質(zhì)可以解答本題.
(1)由題意可得,
S=x=﹣x2+9x,
即S與x的函數(shù)表達(dá)式是S=﹣x2+9x;
(2)由題意可得,
2≤x<,
解得,2≤x<3.6,
∵S=﹣x2+9x,2≤x<3.6,
∴當(dāng)x==3時,S取得最大值,此時S=,
當(dāng)x=2時,S取得最小值,此時S=12,
答:窗戶總面積S的最大值是m2、最小值是12m2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張畫有內(nèi)切圓⊙P的直角三角形紙片AOB置于平面直角坐標(biāo)系中,已知點(diǎn)A(0,3),B(4,0),⊙P與三角形各邊相切的切點(diǎn)分別為D、E、F. 將直角三角形紙片繞其右下角的頂點(diǎn)依次按順時針方向旋轉(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,…,則直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種商品,童威經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(元/件)的一次函數(shù),其售價、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:
售價(元/件) | 50 | 60 | 80 |
周銷售量(件) | 100 | 80 | 40 |
周銷售利潤(元) | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價-進(jìn)價)
(1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)
②該商品進(jìn)價是_________元/件;當(dāng)售價是________元/件時,周銷售利潤最大,最大利潤是__________元
(2)由于某種原因,該商品進(jìn)價提高了元/件,物價部門規(guī)定該商品售價不得超過65元/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤是1400元,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點(diǎn)A.P是弧AB上的一個動點(diǎn).
(1)求半徑OB的長;
(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;
(3)如果BA平分∠PBC,延長BP、CA交于點(diǎn)D,求線段DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)離地面的高度為.當(dāng)起重臂長度為,張角為118°.
(1)求操作平臺離地面的高度;
(2)當(dāng)張角為120°,其它條件不變時,求操作平臺升高的高度.
(最后結(jié)果精確到0.1,參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形邊長為,,分別為線段,上一點(diǎn),且,,與相交于,為線段上一點(diǎn)(不與端點(diǎn)重合),為線段上一點(diǎn)(不與端點(diǎn)重合),則的最小值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com