【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫出x的值;若不存在,請(qǐng)說明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長度和每分鐘3個(gè)單位長度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
【答案】(1)4;(2)1;(3)-3或5;(4)t的值為或4.
【解析】試題分析:(1)根據(jù)數(shù)軸上兩點(diǎn)之間的距離求法即可得;
(2)根據(jù)三點(diǎn)M,N對(duì)應(yīng)的數(shù),得出NM的中點(diǎn)為:x=(-1+3)÷2求出即可;
(3)根據(jù)P點(diǎn)在N點(diǎn)右側(cè)或在M點(diǎn)左側(cè)分別求出即可;
(4)設(shè)經(jīng)過t秒點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,則點(diǎn)P對(duì)應(yīng)的數(shù)是-t,點(diǎn)M對(duì)應(yīng)的數(shù)是-1 - 2t,點(diǎn)N對(duì)應(yīng)的數(shù)是3 - 3t.,根據(jù)PM=PN建立方程,求解即可.
試題解析:(1)MN的長為:|3-(-1)|=4,
故答案為:4;
(2)x=(-1+3)÷2=1,
故答案為:1;
(3)當(dāng)點(diǎn)P在M點(diǎn)左側(cè)時(shí),則有(3-x)+(-1-x)=8,解得:x=-3,
當(dāng)點(diǎn)P在N點(diǎn)右側(cè)是時(shí),則有(x-3)+[x-(-1)]=8,解得:x=5,
綜上,x的值是-3或5;
(4)設(shè)運(yùn)動(dòng)t分鐘時(shí),點(diǎn)P到點(diǎn)M,點(diǎn)N的距離相等,即PM = PN,
點(diǎn)P對(duì)應(yīng)的數(shù)是-t,點(diǎn)M對(duì)應(yīng)的數(shù)是-1 - 2t,點(diǎn)N對(duì)應(yīng)的數(shù)是3 - 3t,
①當(dāng)點(diǎn)M和點(diǎn)N在點(diǎn)P同側(cè)時(shí),點(diǎn)M和點(diǎn)N重合,所以-1 - 2t = 3 - 3t,解得t = 4,符合題意;
②當(dāng)點(diǎn)M和點(diǎn)N在點(diǎn)P異側(cè)時(shí),點(diǎn)M位于點(diǎn)P的左側(cè),點(diǎn)N位于點(diǎn)P的右側(cè)(因?yàn)槿齻(gè)點(diǎn)都向左運(yùn)動(dòng),出發(fā)時(shí)點(diǎn)M在點(diǎn)P左側(cè),且點(diǎn)M運(yùn)動(dòng)的速度大于點(diǎn)P的速度,所以點(diǎn)M永遠(yuǎn)位于點(diǎn)P的左側(cè)),故PM = -t -(-1 - 2t)= t + 1,PN=(3 - 3t)-(-t)= 3 - 2t,
所以t + 1 = 3 - 2t,解得t =,符合題意,
綜上所述,t的值為或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列點(diǎn)在直線y=-x+1上的是 ( )
A. (2,-1) B. (3,3) C. (4,1) D. (1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)了解,個(gè)體服裝銷售要高出進(jìn)價(jià)的20%方可盈利,一銷售老板以高出進(jìn)價(jià)的60%標(biāo)價(jià),如果一件服裝標(biāo)價(jià)240元,那么:
(1)進(jìn)價(jià)是多少元?(2)最低售價(jià)多少元時(shí),銷售老板方可盈利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把二次函數(shù)y=﹣(x+1)2﹣3的圖象沿著x軸翻折后,得到的二次函數(shù)有( )
A.最大值y=3B.最大值y=﹣3C.最小值y=3D.最小值y=﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果只用一種正多邊形做平面密鋪,而且在每一個(gè)正多邊形的每一個(gè)頂點(diǎn)周圍都有6個(gè)正多邊形,則該正多邊形的每個(gè)內(nèi)角度數(shù)為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答
(1)已知x= +1,y= ﹣1,求下列各式的值. ①x2+2xy+y2
②x2﹣y2
(2)先化簡,再求值: ÷( ﹣a),其中a= ﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,點(diǎn)D為AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度先沿CB方向運(yùn)動(dòng)到點(diǎn)B,再沿BA方向向終點(diǎn)A運(yùn)動(dòng),以DP,DQ為鄰邊構(gòu)造PEQD,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t=2時(shí),求PD的長;
(2)如圖2,當(dāng)點(diǎn)Q運(yùn)動(dòng)至點(diǎn)B時(shí),連結(jié)DE,求證:DE∥AP.
(3)如圖3,連結(jié)CD.
①當(dāng)點(diǎn)E恰好落在△ACD的邊上時(shí),求所有滿足要求的t值;
②記運(yùn)動(dòng)過程中PEQD的面積為S,PEQD與△ACD的重疊部分面積為S1,當(dāng)<時(shí),請(qǐng)直接寫出t的取值范圍是 ______ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com