【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(11),且與直線交于B,C兩點.

1)求拋物線的解析式及點C的坐標(biāo);

2)求△ABC的面積;

3)若點Nx軸上的一個動點,過點NMNx軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

【答案】1y=﹣(x12+1,C(1,﹣3);(23;(3)存在滿足條件的N點,其坐標(biāo)為(,0)(,0)(10)(5,0)

【解析】

1)可設(shè)頂點式,把原點坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點坐標(biāo);

2)設(shè)直線AC的解析式為ykxb,與x軸交于D,得到y2x1,求得BD于是得到結(jié)論;

3)設(shè)出N點坐標(biāo),可表示出M點坐標(biāo),從而可表示出MN、ON的長度,當(dāng)△MON和△ABC相似時,利用三角形相似的性質(zhì)可得,可求得N點的坐標(biāo).

1頂點坐標(biāo)為(1,1),

設(shè)拋物線解析式為y=ax12+1,又拋物線過原點,

∴0=a012+1,解得a=1拋物線解析式為y=﹣(x12+1,

y=x2+2x,聯(lián)立拋物線和直線解析式可得

解得,∴B20),C(﹣1,﹣3);

2)設(shè)直線AC的解析式為y=kx+b,與x軸交于D,

A1,1),C(﹣1,﹣3)的坐標(biāo)代入得,

解得:,

∴y=2x1,當(dāng)y=0,即2x1=0,解得:x=,∴D,0),

∴BD=2=,

∴△ABC的面積=SABD+SBCD=××1+××3=3

3)假設(shè)存在滿足條件的點N,設(shè)Nx,0),則Mx,﹣x2+2x),

∴ON=|x|,MN=|x2+2x|,由(2)知,AB=,BC=3,

∵M(jìn)N⊥x軸于點N,∴∠ABC=∠MNO=90°,

當(dāng)△ABC△MNO相似時,有,

當(dāng)時,,即|x||x+2|=|x|,

當(dāng)x=0M、O、N不能構(gòu)成三角形,∴x≠0,∴|x+2|=x+2=±,解得x=x=,此時N點坐標(biāo)為(0)或(,0);

當(dāng)或時,,即|x||x+2|=3|x|,

∴|x+2|=3,x+2=±3,解得x=5x=1

此時N點坐標(biāo)為(﹣1,0)或(50),

綜上可知存在滿足條件的N點,其坐標(biāo)為(,0)或(0)或(﹣1,0)或(5,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)如圖所示,下列結(jié)論:①b24ac0;②a+b+c2;③abc0;④ab+c0,其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A,B分別在x軸,y軸上,點A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負(fù)半軸上運動,如果PQ=,那么當(dāng)點P運動一周時,點Q運動的總路程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出下列說法:

;②方程的根為,;④當(dāng)時,值的增大而增大;⑤當(dāng)時,其中,正確的說法有________(請寫出所有正確說法的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CO上一點,∠BAC的平分線ADO于點D,過點DDEACAC的延長線于點E

(1)求證DEO的切線

(2)如果BAC=60°,AD=4,AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,,;

(1)請說明的理由;

(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;

(3)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時,水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個問題的兩種建系方法.

方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點為原點,以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy

方法二如圖2,以拋物線頂點為原點,以拋物線的對稱軸為y軸,建立平面直角坐標(biāo)系xOy,

查看答案和解析>>

同步練習(xí)冊答案