【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn)和半徑為1,定義如下:

①點(diǎn)的“派生點(diǎn)”為;

②若上存在兩個(gè)點(diǎn),使得,則稱點(diǎn)的“伴侶點(diǎn)”.

應(yīng)用:已知點(diǎn)

1)點(diǎn)的派生點(diǎn)坐標(biāo)為________;在點(diǎn)中,的“伴侶點(diǎn)”是________

2)過(guò)點(diǎn)作直線軸正半軸于點(diǎn),使,若直線上的點(diǎn)的“伴侶點(diǎn)”,求的取值范圍;

3)點(diǎn)的派生點(diǎn)在直線,求點(diǎn)上任意一點(diǎn)距離的最小值.

【答案】1)(1,0),E、D;(2;(3

【解析】

1)根據(jù)定義即可得到點(diǎn)的坐標(biāo),過(guò)點(diǎn)E的切線EM,連接OM,利用三角函數(shù)求出∠MEO=30°,即可得到點(diǎn)E伴侶點(diǎn);根據(jù)點(diǎn)F、D、的坐標(biāo)得到線段長(zhǎng)度與線段OE比較即可判定是否是伴侶點(diǎn)

2)根據(jù)題意求出,∠OGF=60°,由點(diǎn)伴侶點(diǎn),過(guò)點(diǎn)P的切線PA、PB,連接OP,OB,證明OPG是等邊三角形,得到點(diǎn)P應(yīng)在線段PG上,過(guò)點(diǎn)PPHx軸于H,求出點(diǎn)P的橫坐標(biāo)是-,由此即可得到點(diǎn)P的橫坐標(biāo)m的取值范圍;

3)設(shè)點(diǎn)(x-2x+6)Pm,n),根據(jù)派生點(diǎn)的定義得到3m+n=6,由此得到點(diǎn)P在直線y=-3x+6上,設(shè)直線y=-3x+6x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)點(diǎn)OOHABH,交于點(diǎn)C,求出AB的長(zhǎng),再根據(jù)面積公式求出OH即可得到答案.

1)∵,

∴點(diǎn)的派生點(diǎn)坐標(biāo)為(1,0),

E(0,-2)

OE=2,

過(guò)點(diǎn)E的切線EM,連接OM,

OM=1OE=2,∠OME=90°,

sinMEO=,

∴∠MEO=30°,

而在的左側(cè)也有一個(gè)切點(diǎn),使得組成的角等于30°,

∴點(diǎn)E伴侶點(diǎn);

,

OF=>OE

∴點(diǎn)F不可能是伴侶點(diǎn);

1,0),,,

∴點(diǎn)D、伴侶點(diǎn)

伴侶點(diǎn)有:E、D,

故答案為:(1,0),E、D、;

2)如圖,直線ly軸于點(diǎn)G,

,

,∠OGF=60°

∵直線上的點(diǎn)伴侶點(diǎn),

∴過(guò)點(diǎn)P的切線PA、PB,且∠APB=60°,

連接OPOB,

∴∠BOP=30°

∵∠OBP=90°,OB=1

OP=2=OG,

∴△OPG是等邊三角形,

∴若點(diǎn)P伴侶點(diǎn),則點(diǎn)P應(yīng)在線段PG上,

過(guò)點(diǎn)PPHx軸于H,

∵∠POH=90°-60°=30°,OP=2,

PH=1,

OH=,即點(diǎn)P的橫坐標(biāo)是-,

∴當(dāng)直線上的點(diǎn)伴侶點(diǎn)時(shí)的取值范圍是;

3)設(shè)點(diǎn)(x,-2x+6),Pm,n),

根據(jù)題意得:m+n=x,m-n=-2x+6,

3m+n=6,

n=-3m+6

∴點(diǎn)P坐標(biāo)為(m,-3m+6),

∴點(diǎn)P在直線y=-3x+6上,

設(shè)直線y=-3x+6x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過(guò)點(diǎn)OOHABH,交于點(diǎn)C,如圖,則A2,0),B0,6),

,

,

,

,

即點(diǎn)P上任意一點(diǎn)距離的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,點(diǎn)PAB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)AB不重合),直線l是經(jīng)過(guò)點(diǎn)P的一條直線,把△ABC沿直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B’.

1)如圖1,當(dāng)PB=4時(shí),若點(diǎn)B’恰好在AC邊上,則AB’的長(zhǎng)度為_____;

2)如圖2,當(dāng)PB=5時(shí),若直線l//AC,則BB’的長(zhǎng)度為 ;

3)如圖3,點(diǎn)PAB邊上運(yùn)動(dòng)過(guò)程中,若直線l始終垂直于AC,△ACB’的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積;

4)當(dāng)PB=6時(shí),在直線l變化過(guò)程中,求△ACB’面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題的逆命題是真命題的是(  )

A.兩直線平行,同位角相等

B.等邊三角形是銳角三角形

C.如果兩個(gè)實(shí)數(shù)是正數(shù),那么它們的積是正數(shù)

D.全等三角形的對(duì)應(yīng)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,圖2分別是一滑雪運(yùn)動(dòng)員在滑雪過(guò)程中某一時(shí)刻的實(shí)物圖與示意圖,已知運(yùn)動(dòng)員的小腿與斜坡垂直,大腿與斜坡平行,且三點(diǎn)共線,若雪仗長(zhǎng)為,,求此刻運(yùn)動(dòng)員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用長(zhǎng)為22米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為14米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料做了寬為1米的兩扇小門.

(1)設(shè)花圃的一邊AB長(zhǎng)為x米,請(qǐng)你用含x的代數(shù)式表示另一邊AD的長(zhǎng)為   米;

(2)若此時(shí)花圃的面積剛好為45m2,求此時(shí)花圃的長(zhǎng)與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是矩形邊上一點(diǎn),沿折疊為,點(diǎn)落在上.

1)求證:;

2)若,求的值;

3)設(shè),是否存在的值,使相似?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠C=90°

(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);

(2)綜合應(yīng)用:在(1)的條件下,連接DE

①求證:CD=DE;

②若sinA=,AC=6,求AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB5,AD3,動(dòng)點(diǎn)P滿足SPABS矩形ABCD,則點(diǎn)PA、B兩點(diǎn)距離之和PA+PB的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案