【題目】已知關(guān)于x的方程

1)求證:無論取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;

2)若關(guān)于的二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求m的整數(shù)值.

【答案】1)證明見解析;(2

【解析】試題分析:(1)先分兩種情況討論,當(dāng)m=0時(shí)方程的解為2和當(dāng)m≠0時(shí),△=b2-4ac=(m+1)2≥0有實(shí)數(shù)根,得出無論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;

(2)根據(jù)(1)求出x的根,再根據(jù)m為整數(shù),且x為整數(shù),即可求出m的值.

解:(1)分兩種情況討論.

①當(dāng)時(shí),方程為 ,

x=2,方程有實(shí)數(shù)根,

②當(dāng),則一元二次方程的根的判別式,

,

,

不論為何實(shí)數(shù), 成立,

方程恒有實(shí)數(shù)根.

綜合①②,可知取任何實(shí)數(shù),方程恒有實(shí)數(shù)根.

2)設(shè)為拋物線軸交點(diǎn)的橫坐標(biāo),

則有 ,

∵拋物線的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且m是整數(shù),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動(dòng)直線l從與BM重合的位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過點(diǎn)EEGBCG,連接MQ、QG.請(qǐng)問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù)和一次函數(shù),把 稱為這兩個(gè)函數(shù)的再生二次函數(shù),其中t是不為零的實(shí)數(shù),其圖象記作拋物線L.現(xiàn)有點(diǎn)A2,0)和拋物線L上的點(diǎn)B1,n),請(qǐng)完成下列任務(wù):

【嘗試】(1)當(dāng)t=2時(shí),拋物線 的頂點(diǎn)坐標(biāo)為   ;

2)判斷點(diǎn)A   (填是或否)在拋物線L上;

3n的值是   ;

【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線L總過定點(diǎn),坐標(biāo)為      

【應(yīng)用】二次函數(shù)是二次函數(shù)和一次函數(shù)的一個(gè)再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:∠ACD是△ABC的一個(gè)外角,CA=CB.

(1)畫出∠ACD的角平分線CE.

(2)求證:CE∥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題共10分)ABAC 相交于點(diǎn)A, BDCD相交于點(diǎn)D,探究∠BDC與∠B 、 ∠C∠BAC的關(guān)系

小明是這樣做的

以點(diǎn)A為端點(diǎn)作射線AD

∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD

同理∠2=∠C+∠CAD

∴∠1+∠2=∠B+∠BAD+∠C+∠CAD即∠BDC=∠B+∠C+∠BAC

小英的思路是延長(zhǎng)BDAC于點(diǎn)E

(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結(jié)論.

2按照上面的思路解決如下問題如圖在△ABC,BE、CD分別是∠ABC∠ACB的角平分線,ACEABDBE、CD相交于點(diǎn)O,∠A=60°求∠BOC的度數(shù).

3)如圖△ABCBO、CO分別是∠ABC與∠ACB的角平分線BO、CO相交于點(diǎn)O猜想∠BOC與∠A有怎樣的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,DBC的中點(diǎn),且ADACDEBC,與AB相交于點(diǎn)EECAD相交于點(diǎn)F.過C點(diǎn)作CGAD,交BA的延長(zhǎng)線于G,過ABC的平行線交CGH點(diǎn)

1)若∠BAC900,求證:四邊形ADCH是菱形;

2)求證:ABC∽△FCD;

3)若DE3BC8,求FCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2m5,3m2.則6m的值為(

A.7B.10C.25D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A3,0),B10)兩點(diǎn),與y軸交于點(diǎn)C

1)求該二次函數(shù)的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求ACD的面積;

3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)(1,-3)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案