【題目】已知關(guān)于x的方程
(1)求證:無論取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于的二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求m的整數(shù)值.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)先分兩種情況討論,當(dāng)m=0時(shí)方程的解為2和當(dāng)m≠0時(shí),△=b2-4ac=(m+1)2≥0有實(shí)數(shù)根,得出無論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)根據(jù)(1)求出x的根,再根據(jù)m為整數(shù),且x為整數(shù),即可求出m的值.
解:(1)分兩種情況討論.
①當(dāng)時(shí),方程為 ,
∴x=2,方程有實(shí)數(shù)根,
②當(dāng),則一元二次方程的根的判別式,
,
=,
不論為何實(shí)數(shù), 成立,
方程恒有實(shí)數(shù)根.
綜合①、②,可知取任何實(shí)數(shù),方程恒有實(shí)數(shù)根.
(2)設(shè)為拋物線與軸交點(diǎn)的橫坐標(biāo),
則有 , ,
∵拋物線的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且m是整數(shù),
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線l從與BM重合的位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)和一次函數(shù),把 稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線L.現(xiàn)有點(diǎn)A(2,0)和拋物線L上的點(diǎn)B(﹣1,n),請(qǐng)完成下列任務(wù):
【嘗試】(1)當(dāng)t=2時(shí),拋物線 的頂點(diǎn)坐標(biāo)為 ;
(2)判斷點(diǎn)A (填是或否)在拋物線L上;
(3)n的值是 ;
【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線L總過定點(diǎn),坐標(biāo)為 .
【應(yīng)用】二次函數(shù)是二次函數(shù)和一次函數(shù)的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題共10分)AB和AC 相交于點(diǎn)A, BD和CD相交于點(diǎn)D,探究∠BDC與∠B 、 ∠C、∠BAC的關(guān)系.
小明是這樣做的:
解:以點(diǎn)A為端點(diǎn)作射線AD.
∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD.
同理∠2=∠C+∠CAD.
∴∠1+∠2=∠B+∠BAD+∠C+∠CAD.即∠BDC=∠B+∠C+∠BAC.
小英的思路是:延長(zhǎng)BD交AC于點(diǎn)E.
(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結(jié)論.
(2)按照上面的思路解決如下問題:如圖:在△ABC中,BE、CD分別是∠ABC∠ACB的角平分線,交AC于E,交AB于D.BE、CD相交于點(diǎn)O,∠A=60°.求∠BOC的度數(shù).
(3)如圖:△ABC中,BO、CO分別是∠ABC與∠ACB的角平分線,且BO、CO相交于點(diǎn)O.猜想∠BOC與∠A有怎樣的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.過C點(diǎn)作CG∥AD,交BA的延長(zhǎng)線于G,過A作BC的平行線交CG于H點(diǎn).
(1)若∠BAC=900,求證:四邊形ADCH是菱形;
(2)求證:△ABC∽△FCD;
(3)若DE=3,BC=8,求△FCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com