【題目】如圖,在矩形ABCD中,AB4,BC6,將矩形ABCDB逆時針旋轉30°后得到矩形GBEF,延長DAFG于點H,則GH的長為( 。

A.84B.4C.34D.63

【答案】A

【解析】

作輔助線,構建直角△AHM,先由旋轉得BG的長,根據(jù)旋轉角為30°得∠GBA30°,利用30°角的三角函數(shù)可得GMBM的長,由此得AMHM的長,相減可得結論.

如圖,延長BAGFM,

由旋轉得:∠GBA30°,∠G=∠BAD90°,BGAB4,

∴∠BMG60°,

tan30°=,

,

GM,

BM

AM4,

RtHAM中,∠AHM30°,

HM2AM8

GHGMHM﹣(8)=84,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數(shù)學成就.《九章算術》勾股一章記載:今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?譯文:已知長方形門的高比寬多68寸,門的對角線長1丈,那么門的高和寬各是多少?(1=10尺,1=10)設長方形門的寬尺,可列方程為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:

例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:

1)已知點P(3,-2).

①若點A(-2,-1),則d(P,A)=

②若點B(b,2),且d(P,B)=5,則b= ;

③已知點Cm,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.

2)⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為全面貫徹黨的教育方針,堅持“健康第一的教育理念,促進學生健康成長,提高體質健康水平,成都市調整體育中考實施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學的七年級起開始實施,某1學為了解七年級學生對三大球類運動的喜愛情況,從七年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖。請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)求參與調查的學生中,喜愛排球運動的學生人數(shù),并補全條形圖

2)若該中學七年級共有400名學生,請你估計該中學七年級學生中喜愛籃球運動的學生有多少名?

3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M0,2)的直線lx軸平行,且直線l分別與反比例函數(shù)yx0)和yx0)的圖象分別交于點P,Q

1)求P點的坐標;

2)若POQ的面積為9,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關系式及x值的取值范圍;

2)要圍成面積為45m2的花圃,AB的長是多少米?

3)當AB的長是多少米時,圍成的花圃的面積最大,最大面積為多少m2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的邊ABx軸正半軸上,點A與原點重合,點D的坐標是 34),反比例函數(shù)yk≠0)經過點C,則k的值為( 。

A.12B.15C.20D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉60°到AQ,連接PQ、QC.

(1)求證:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的長度.

查看答案和解析>>

同步練習冊答案