【題目】如圖,在RtΔABC中,∠C=90°,AC=4,BC=3.

1)如圖(1),四邊形DEFGABC的內(nèi)接正方形,求正方形的邊長(zhǎng).

2)如圖(2),三角形內(nèi)有并排的兩個(gè)相等的正方形,它們組成的矩形內(nèi)接于ΔABC,求正方形的邊長(zhǎng).

3)如圖(3),三角形內(nèi)有并排的三個(gè)相等的正方形,它們組成的矩形內(nèi)接于ΔABC,求正方形的邊長(zhǎng).

4 如圖(4),三角形內(nèi)有并排的n個(gè)相等的正方形,它們組成的矩形內(nèi)接于ΔABC,請(qǐng)寫出正方形的邊長(zhǎng).

【答案】1x=;(2x= ;(3x=;(4x=.

【解析】

1)作CNAB,再根據(jù)GFAB,得到△CGF∽△CAB,設(shè)出正方形的邊長(zhǎng)為x,根據(jù)相似三角形的性質(zhì)得到關(guān)于x的方程,求出方程的解,即可求出正方形的邊長(zhǎng);

2)作CNAB,交GF于點(diǎn)M,交AB于點(diǎn)N,同(1)可知,△CGF∽△CAB,根據(jù)對(duì)應(yīng)邊的比等于對(duì)應(yīng)高之比,同理可求出正方形的邊長(zhǎng);

3)作CNAB,交GF于點(diǎn)M,交AB于點(diǎn)N,同(1)可知,△CGF∽△CAB,根據(jù)對(duì)應(yīng)邊的比等于對(duì)應(yīng)高之比,同理可求出正方形的邊長(zhǎng);

4)同理可得正方形的邊長(zhǎng).

1)在圖1中作CNAB,交GF于點(diǎn)M,交AB于點(diǎn)N

RtABC中,∵AC=4BC=3,∴AB=5,CN

GFAB,∴△CGF∽△CAB,∴,設(shè)正方形邊長(zhǎng)為x,則 ,∴x

2)在圖2中作CNAB,交GF于點(diǎn)M,交AB于點(diǎn)N

GFAB,∴△CGF∽△CAB,∴,設(shè)每個(gè)正方形邊長(zhǎng)為x,則 ,∴x;

3)在圖3中,作CNAB,交GF于點(diǎn)M,交AB于點(diǎn)N

GFAB,∴△CGF∽△CAB,∴,設(shè)每個(gè)正方形的邊長(zhǎng)為x,則,∴x

4)設(shè)每個(gè)正方形的邊長(zhǎng)為x,同理得到:,則x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P的橫坐標(biāo)為2,將點(diǎn)A繞點(diǎn)P旋轉(zhuǎn),使它的對(duì)應(yīng)點(diǎn)B恰好落在x軸上(不與A點(diǎn)重合);再將點(diǎn)B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)C

1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo);

2)求經(jīng)過AB,C三點(diǎn)的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在AOB 中,∠AOB90OA3,OB4.將AOB 沿 x 軸依次以點(diǎn) A、B、O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②圖③、,則旋轉(zhuǎn)得到的圖⑧的直角頂點(diǎn)的坐標(biāo)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)

的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.

(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請(qǐng)利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、NAB的三等分點(diǎn),DM、DN分別交ACPQ兩點(diǎn),則APPQQC=________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.

1)求圓弧所在的圓的半徑r的長(zhǎng);

2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,-),點(diǎn)D在劣弧上,連結(jié)BDx軸于點(diǎn)C,且∠COD=CBO.

(1)求⊙M的半徑;

(2)求證:BD平分∠ABO;

(3)在線段BD的延長(zhǎng)線上找一點(diǎn)E,使得直線AE恰為⊙M的切線,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,拋物線L1:y=+bx+c過點(diǎn)C(0,3),與拋物線L2:y=x+2的一個(gè)交點(diǎn)為A,且點(diǎn)A的橫坐標(biāo)為2,點(diǎn)P、Q分別是拋物線L1L2上的動(dòng)點(diǎn)。

(1)求拋物線L1對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)若以點(diǎn)A. C.P、Q為頂點(diǎn)的四邊形恰為平行四邊形,求出點(diǎn)P的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里.

1)判斷△A1A2B2的形狀,并給出證明;

2)求乙船每小時(shí)航行多少海里?

查看答案和解析>>

同步練習(xí)冊(cè)答案