【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D. 下列結(jié)論:AD是∠BAC的平分線;②點(diǎn)DAB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有(

A. 1B. 2C. 3D. 4

【答案】D

【解析】

①根據(jù)作圖的過程可以判定AD是∠BAC的角平分線;

②利用等角對等邊可以證得ADB的等腰三角形,由等腰三角形的三合一的性質(zhì)可以證明點(diǎn)DAB的垂直平分線上;

③利用角平分線的定義可以推知∠CAD=30°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);

④利用30度角所對的直角邊是斜邊的一半、三角形的面積計算公式來求兩個三角形的面積之比.

解:如圖:

根據(jù)作圖方法可得AD是∠BAC的平分線,故①正確;
∵∠C=90°,∠B=30°,
∴∠CAB=60°,
AD是∠BAC的平分線,
∴∠DAC=DAB=30°,

∵∠B=30°,∠DAB=30°,
AD=DB,
∴點(diǎn)DAB的中垂線上,故②正確;
∴∠ADC=60°,故③正確;
∵∠CAD=30°,

AD=DB,

故④正確。

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,,是對角線上的一個動點(diǎn),若的最小值是10,則長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】吉林省廣播電視塔(簡稱吉塔)是我省目前最高的人工建筑,也是俯瞰長春市美景的最佳去處.某科技興趣小組利用無人機(jī)搭載測量儀器測量吉塔的高度.已知如圖將無人機(jī)置于距離吉塔水平距離138米的點(diǎn)C處,則從無人機(jī)上觀測塔尖的仰角恰為30°,觀測塔基座中心點(diǎn)的俯角恰為45°.求吉塔的高度.(注: ≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知在正方形ABCD,FCD邊上一點(diǎn)(不與C、D重合)過點(diǎn)DDGBFBF延長線于點(diǎn)G連接AG,BD于點(diǎn)E,CD于點(diǎn)M,連接EFDG=4AG=,EF的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.

(1)請列式表示操場空地的面積;

(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程:x2x8=0,解決一下問題:

1)不解方程判斷此方程的根的情況;

2)請按要求分別解這個方程:①配方法;②因式分解法.

3)這些方法都是將解 轉(zhuǎn)化為解

4)嘗試解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個交點(diǎn)是(5,0);②4a+c>2b;③4a+b=0;④當(dāng)x>-1時,y的值隨x值的增大而增大.其中正確的結(jié)論有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

1y(x+y)+(x+y)(x-y)-x2,其中x=-2,y=;

2)(x+y2-2xx+y),其中x=3,y=2

3(a+b)22a(b+1)a2b÷b,其中a=2,b=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應(yīng)求,很快銷售完了.商店又去采購第二批同樣款式的書包,進(jìn)貨單價比第一次高元,商店用了元,所購數(shù)量是第一次的.

1)求第一批采購的書包的單價是多少元?

2)若商店按售價為每個書包元,銷售完這兩批書包,總共獲利多少元?

查看答案和解析>>

同步練習(xí)冊答案