【題目】如圖,ABC中,∠C=90°,AC=6AB=10,點(diǎn)D是邊BC上一點(diǎn).若沿ADACD翻折,點(diǎn)C剛好落在AB邊上點(diǎn)E處,則AD= _______.

【答案】

【解析】

由勾股定理可知BC=8.由折疊的性質(zhì)得:AE=AC=6,DE=DC,∠AED=C=90,設(shè)DE=DC=x,則BD=8-x,在RtBED中依據(jù)勾股定理列方程得出CD=3,再由勾股定理即可得出AD的長(zhǎng).

RtACB中,由勾股定理可知AC2+BC2=AB2
BC==8
由折疊的性質(zhì)得:AE=AC=6,DE=DC,∠AED=C=90
設(shè)DE=DC=x,則BD=8-x,BE=AB-AE=4
RtBED中,BE2+DE2=BD2
42+x2=8-x2
x=3
CD=3,
AD=
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,在△ABC中,點(diǎn)E、D、F分別在邊ABBC、CA上,且DE∥CA,DF∥BA.下列四個(gè)判斷中,不正確的是( )

A.四邊形AEDF是平行四邊形

B.如果∠BAC=90°,那么四邊形AEDF是矩形

C.如果AD平分∠BAC,那么四邊形AEDF是矩形

D.如果AD⊥BCAB=AC,那么四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的折線是某個(gè)函數(shù)的圖象,根據(jù)圖象解答下列問(wèn)題.

1)寫(xiě)出自變量x的取值范圍:__________,函數(shù)值y的取值范圍:__________

2)求這個(gè)分段函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=2B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與BC重合),連接AD,作ADE=40°,DE交線段ACE點(diǎn).

1)當(dāng)BDA=115°時(shí),BAD=___°,DEC=___°;

2)當(dāng)DC等于多少時(shí),ABDDCE全等?請(qǐng)說(shuō)明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出BDA的度數(shù);若不可以,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會(huì)學(xué)習(xí)一個(gè)定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在RtABC中,∠ACB=90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CD=AB.

靈活應(yīng)用:如圖2,ABC中,∠BAC=90°,AB=3, AC=4,點(diǎn)DBC的中點(diǎn),將ABD沿AD翻折得到AED,連接BE, CE.

1)求AD的長(zhǎng);

2)判斷BCE的形狀;

3)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A1的坐標(biāo)為(10),A2y軸的正半軸上,且∠A1A2O =30°,過(guò)點(diǎn)A2A2A3A1A2,垂足為A2,交x軸于點(diǎn)A3;過(guò)點(diǎn)A3A3A4A2A3,垂足為A3,交y軸于點(diǎn)A4;過(guò)點(diǎn)A4A4A5A3A4,垂足為A4,交x軸于點(diǎn)A5;過(guò)點(diǎn)A5A5A6A4A5,垂足為A5,交y軸于點(diǎn)A6;按此規(guī)律進(jìn)行下去,則點(diǎn)A2018的縱坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等腰直角三角形,∠C=90°,點(diǎn)MAC的中點(diǎn),延長(zhǎng)BM至點(diǎn)D,使DM=BM,連接AD

1)如圖①,求證:DAMBCM;

2)已知點(diǎn)NBC的中點(diǎn),連接AN

①如圖②,求證:BCMACN;

②如圖③,延長(zhǎng)NA至點(diǎn)E,使AE=NA,連接DE.求證:BDDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的一元二次方程的實(shí)數(shù)解是

的取值范圍;

如果,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案