【題目】如圖,雙曲線(x>0)上有一點(diǎn)A(1,5),過(guò)點(diǎn)A的直線y=mx+n與x軸交于點(diǎn)C(6,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)根據(jù)圖象直接寫(xiě)出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍.
【答案】(1)y=﹣x+6 (2)12 (3)0<x<1或x>6
【解析】
試題(1)把A的代入反比例函數(shù)的解析式即可求出反比例函數(shù)的解析式,把A、C的坐標(biāo)代入y=mx+n即可求出一次函數(shù)的解析式;
(2)求出B的坐標(biāo),根據(jù)三角形的面積公式求出即可;
(3)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.
解:(1)把A(1,5)代入y=得:=5,
∴反比例函數(shù)的解析式是y=,
把A、C的坐標(biāo)代入y=mx+n得:,
解得:m=﹣1,n=6,
∴一次函數(shù)的解析式是y=﹣x+6;
(2)解方程組得:,
∵A(1,5),
∴B(5,1),
∵C(6,0),
∴OC=6,
∴S△AOB=S△AOC﹣S△BCO=×6×5﹣×6×1=12;
(3)在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍是0<x<1或x>6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:求解一元一次方程,需要根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式;求解二元一次方程組,需要通過(guò)消元把它轉(zhuǎn)化為一元一次方程來(lái)解;求解三元一次方程組,需要把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,需要把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解;求解分式方程,需要通過(guò)去分母把它轉(zhuǎn)化為整式方程來(lái)解,各類(lèi)方程的解法不盡相同,但是它們都用到一種共同的基本數(shù)學(xué)思想﹣轉(zhuǎn)化,即把未知轉(zhuǎn)化為已知來(lái)求解.
用“轉(zhuǎn)化“的數(shù)學(xué)思想,我們還可以解一些新的方程.
例如,解一元三次方程x3+x2﹣2x=0,通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,通過(guò)解方程x=0和x2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.
再例如,解根號(hào)下含有來(lái)知數(shù)的方程:=x,通過(guò)兩邊同時(shí)平方把它轉(zhuǎn)化為2x+3=x2,解得:x1=3,x2=﹣1.因?yàn)?/span>2x+3≥0,且x≥0,所以x=﹣1不是原方程的根,x=3是原方程的解.
(1)問(wèn)題:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)拓展:求方程=x﹣1的解;
(3)應(yīng)用:在一個(gè)邊長(zhǎng)為1的正方形中構(gòu)造一個(gè)如圖所示的正方形;在正方形ABCD邊上依次截取AE=BF=CG=DH=,連接AG,BH,CE,DF,得到正方形MNPQ,若小正方形MNPQ(圖中陰影部分)的邊長(zhǎng)為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)你解決相關(guān)問(wèn)題:
在函數(shù)中,自變量x可以是任意實(shí)數(shù);
如表y與x的幾組對(duì)應(yīng)值:
X | 0 | 1 | 2 | 3 | 4 | ||||||
Y | 0 | 1 | 2 | 3 | 2 | 1 | a |
______;
若,為該函數(shù)圖象上不同的兩點(diǎn),則______;
如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象:
該函數(shù)有______填“最大值”或“最小值”;并寫(xiě)出這個(gè)值為______;
求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積;
觀察函數(shù)的圖象,寫(xiě)出該圖象的兩條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=∠CFF=45°
(1) 將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90 °,得到△ABG(如圖1),求證:BE+DF=EF;
(2) 若直線EF與AB、AD的延長(zhǎng)線分別交于點(diǎn)M、N(如圖2),求證:
(3) 將正方形改為長(zhǎng)與寬不相等的矩形,其余條件不變(如圖3),直接寫(xiě)出線段EF、BE、DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
依據(jù)2:
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,FD的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中平分交BC于平分交AD于F.
(1)說(shuō)明四邊形AECF為平行四邊形;
(2)求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AB//CD,∠B=∠D.
(1)求證:四邊形ABCD為平行四邊形;
(2)若點(diǎn)P為對(duì)角線AC上的一點(diǎn),PE⊥AB于E,PF⊥AD于F,且PE=PF,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是平行四邊形ABCD對(duì)角線BD上的動(dòng)點(diǎn),點(diǎn)M為AD的中點(diǎn),已知AD=8,AB=10,∠ABD=45°,把平行四邊形ABCD繞著點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)Q,則線段MQ的長(zhǎng)度的最大值與最小值的差為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“在初中數(shù)學(xué)教學(xué)候總使用計(jì)算器是否直接影響學(xué)生計(jì)算能力的發(fā)展”這一問(wèn)題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對(duì)此問(wèn)題的看法(看法分為三種:沒(méi)有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:
n名學(xué)生對(duì)使用計(jì)算器影響計(jì)算能力的發(fā)展看法人數(shù)統(tǒng)計(jì)表
看法 | 沒(méi)有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計(jì)表中的m= ;
(3)估計(jì)該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com