【題目】某超市銷售多種顏色的運動服裝,其中平均每天銷售紅、黃、藍(lán)、白四種顏色運動服的數(shù)量如表,由此繪制的不完整的扇形統(tǒng)計圖如圖:
(1)求表中m、n、α的值,并將扇形統(tǒng)計圖補充完整:表中m= ,n= ,α= ;
(2)為吸引更多的顧客,超市將上述扇形統(tǒng)計圖制成一個可自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客在本超市購買商品金額達(dá)到一定的數(shù)目,就獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針指向紅色服裝區(qū)域、黃色服裝區(qū)域,可分別獲得60元、20元的購物券.求顧客每轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券金額的平均數(shù).
【答案】(1)160,40,90,見解析;(2)12.5
【解析】
(1)根據(jù)藍(lán)色服裝所占扇形圓心角的度數(shù)和服裝的數(shù)量,求出m的值,再根據(jù)四中顏色服裝銷量與總量之間的關(guān)系,即可求出n的值,根據(jù)黃色衣服所占扇形圓心角的度數(shù).
(2)分別計算轉(zhuǎn)盤停止后,指針指向紅色服裝區(qū)域、黃色服裝區(qū)域,的概率,再算出平均數(shù)即可.
(1)m=40÷25%=160,
20+n+40+1.5n=160,
解得:n=40,
α=40÷160×100%×360°=90°,
(2)P(紅)=20÷160=,
P(黃)=40÷160=,
每轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券金額的平均數(shù)是:
60×+20×=12.5(元)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x-15|+=0(OB>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,連接BN.將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=.
⑴ 求點B的坐標(biāo).
⑵ 求直線BN的解析式.
⑶ 將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運動的時間t(0<t≤13)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為的內(nèi)接四邊形,直徑與對角線相交于點,作于,與過點的直線相交于點,.
(1)求證:為的切線;
(2)若平分,求證:;
(3)在(2)的條件下,為的中點,連接,若,的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學(xué),且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,
(1)求拋物線的解析式;
(2)設(shè)點P的橫坐標(biāo)為m,當(dāng)線段PE的長取最大值時,解答以下問題.
①求此時m的值.
②設(shè)Q是平面直角坐標(biāo)系內(nèi)一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是( )
A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點A(8,0)和點B(0,6),點C是AB的中點,點P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點P的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com