【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB,交CD于點E,交BC于點F,若AF=BF,求證:△CEF是等邊三角形.
【答案】見解析.
【解析】
在△ABC中,AF平分∠CAB、AF=BF求得∠B=∠2=∠1=30°,根據(jù)外角性質(zhì)可得∠4=60°,在RT△ADE中可得∠3=∠5=60°,進而可知∠4=∠5=60°,得證.
證明:如圖,
∵AF是∠BAC的平分線,
∴∠CAB=2∠1=2∠2,
∵AF=BF,
∴∠2=∠B,
∵∠ACB=90°,
∴∠B+∠CAB=90°,即∠B+2∠1=∠B+2∠2=90°,
∴∠B=∠1=∠2=30°,
∵∠4是△ABF的外角,
∴∠4=∠2+∠B=60°,
∵CD是AB邊上的高,
∴∠2+∠3=90°,
∴∠3=60°,
∵∠5=∠3,
∴∠4=∠5=60°,
∴△CEF是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,m),B(1,m),C(2,m+1)在同一個函數(shù)圖象上,這個函數(shù)圖象可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省教育廳下發(fā)了在全省中小學(xué)幼兒園廣泛開展節(jié)約教育的通知,通知中要求各學(xué)校全面持續(xù)開展“光盤行動”深圳市教育局督導(dǎo)組為了調(diào)查學(xué)生對“節(jié)約教育”內(nèi)容的了解程度程度分為:“A:了解很多”、“B:了解較多”、“C:了解較少”、“D:不了解”,對本市某所中學(xué)的學(xué)生進行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計圖:
根據(jù)以上信息,解答下列問題:
補全條形統(tǒng)計圖;
本次抽樣調(diào)查了______名學(xué)生;在扇形統(tǒng)計圖中,求出“D”的部分所對應(yīng)的圓心角度數(shù).
若該中學(xué)共有2000名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對“節(jié)約教育”內(nèi)容“了解較少”的有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂
點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD和菱形BEFG中,點A、B、E在同一直線上,P是線段DF的中點,連接PG,PC.若∠ABC=∠BEF=60°,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結(jié)論正確的是( )
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為,寬為的全等小矩形,且.(以上長度單位:)
(1)觀察圖形,發(fā)現(xiàn)代數(shù)式可以因式分解為_________________;
(2)若每塊小矩形的面積為,四個正方形的面積和為,試求圖中所有裁剪線(虛線部分)的長度之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC,BD為對角線,AB=BC=AC=BD,則∠ADC的大小為( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1經(jīng)過點A(﹣1,0)和點B(1,4)
(1)求直線l1的表達(dá)式;
(2)若點P是x軸上的點,且△APB的面積為8,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com