【題目】一副三角板按如圖所示疊放在一起,其中點(diǎn)B、D重合,若固定三角形AOB, 改變△ACD的位置(其中A點(diǎn)位置始終不變),使三角形ACD的一邊與三角形AOB的某一邊平行時(shí),寫出∠BAD的所有可能的值 .
【答案】15°,30°,45°,75°,105°,135°,150°,165°
【解析】解:分8種情況討論: 1)如圖1,AD邊與OB邊平行時(shí),∠BAD=45°;
2)如圖2,當(dāng)AC邊與OB平行時(shí),∠BAD=90°+45°=135°;
3)如圖3,DC邊與AB邊平行時(shí),∠BAD=60°+90°=150°,
4)如圖4,DC邊與OB邊平行時(shí),∠BAD=135°+30°=165°,
5)如圖5,DC邊與OB邊平行時(shí),∠BAD=45°﹣30°=15°;
6)如圖6,DC邊與AO邊平行時(shí),∠BAD=15°+90°=105°
7)如圖7,DC邊與AB邊平行時(shí),∠BAD=30°,
8)如圖8,DC邊與AO邊平行時(shí),∠BAD=30°+45°=75°
故答案為:15°,30°,45°,75°,105°,135°,150°,165°.
要分類討論,不要漏掉一種情況,也可實(shí)際用三角板操作找到它們之間的關(guān)系;再計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計(jì)算行走的步數(shù)與相應(yīng)的能量消耗.對(duì)比手機(jī)數(shù)據(jù)發(fā)現(xiàn):小瓊步行步與小剛步行步消耗的能量相同,若每消耗千卡能量小瓊行走的步數(shù)比小剛多步,求小剛每消耗千卡能量需要行走多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,cosC=時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2+4x﹣1=0,下列配方結(jié)果正確的是( )
A.(x+2)2=5
B.(x+2)2=1
C.(x﹣2)2=1
D.(x﹣2)2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,F(xiàn)在CD上,且AF垂直平分CD,F(xiàn)G平分∠AFD,交AD于G,連接GB,交AF于N,且FN=FD.
(1)求證:△GFN≌△GFD;
(2)如圖,連接ND,若BC=ND,∠ADC=75°,求證:AN=AB;
(3)如圖2,延長(zhǎng)AF、BC交于點(diǎn)E,過B作BK⊥AE于K,若∠BAF=2∠E,猜想,AB與KF之間有何數(shù)量關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com