【題目】如圖,AB、CD是⊙O的切線,B、D為切點,AB=2,CD=4,AC=10.若∠A+∠C=90°,則⊙O的半徑是_______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點,與軸交于點C,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,-2),連接BC、AD.
(1)將矩形OBHC繞點B按逆時針旋轉(zhuǎn)90°后,再沿軸對折到矩形GBFE(點C與點E對應,點O與點G對應),求點E的坐標;
(2)設過點E的直線交AB于點P,交CD于點Q.
①當四邊形PQCB為平行四邊形時,求點P的坐標;
②是否存在點P,使直線PQ分梯形ADCB的面積為1∶3兩部分?若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=10cm,AB=4cm,動點P從點A出發(fā),以2cm/s的速度沿AD向終點D移動,設移動時間為(s) .連接PC,以PC為一邊作正方形PCEF,連接DE、DF.
(1)求正方形PCEF的面積(用含的代數(shù)式來表示,不要求化簡),并求當正方形PCEF的面積為25 cm2時的值;
(2)設△DEF的面積為(cm2),求與之間的函數(shù)關系式,并求當為何值時?△DEF的面積取得最小值,這個最小值是多少?
(3)求當為何值時?△DEF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校航模小組打算制作模型飛機,設計了如圖所示的模型飛機機翼圖紙.圖紙中AB∥CD,均與水平方向垂直,機翼前緣AC、機翼后緣BD與水平方向形成的夾角度數(shù)分別為45°、27°,AB=20cm,點D到直線AB的距離為30cm.求機翼外緣CD的長度.(參考數(shù)據(jù):sin27°≈0.45,cos27°≈0.89,tan27°≈0.51.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:EF +AE= BF ;
(2)求證:△PDA∽△PCD ;
(3)若AC=6,BC=8,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式動扶梯,如圖所示,已知原階梯式自動扶梯AB長為10m,扶梯AB的坡度i為1:.改造后的斜坡式動扶梯的坡角∠ACB為15°,請你計算改造后的斜坡式自動扶梯AC的長度.
(結(jié)果精確到0.1m.參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四張正面分別標有數(shù)字0,1,2,3的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機抽出一張卡片,則抽到數(shù)字“2”的概率為 ;
(2)隨機抽出一張卡片,記下數(shù)字后放回并攪勻,再隨機抽出一張卡片,請用列表或畫樹狀圖的方法,求兩次抽出的卡片上的數(shù)字之和是3的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com