【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,則__________(點(diǎn),,,,是網(wǎng)格線交點(diǎn)).
【答案】
【解析】
連接CG、AG,根據(jù)勾股定理的逆定理可得∠CAG=90°,從而知△CAG是等腰直角三角形,根據(jù)平行線的性質(zhì)和三角形全等,可知,∠BAC-∠DAE=∠ACG,即可得解.
解:如圖,連接CG、AG,
由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,
∴AC2+AG2=CG2,
∴∠CAG=90°,
∴△CAG是等腰直角三角形,
∴∠ACG=45°,
∵CF∥AB,
∴∠ACF=∠BAC,
在△CFG和△ADE中,
∵CF=AD, ∠CFG=∠ADE=90°, FG=DE,
∴△CFG≌△ADE(SAS),
∴∠FCG=∠DAE,
∴∠BAC-∠DAE=∠ACF-∠FCG=∠ACG=45°,
故答案為:45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程的兩實(shí)數(shù)根.
(1)求m的范圍;
(2)若,求m的值;
(3)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,E,F(xiàn)分別是AB與BC邊上的中點(diǎn),連接AF,DE,BD,交于G,H(如圖所示)。求AG:GH:HF的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線于。
(1)求點(diǎn)的坐標(biāo);
(2)若,求的值;
(3)在(2)的條件下,是線段上一點(diǎn),軸于,交于,若,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在BC上,點(diǎn)F在CD上,連接AE、AF、EF,∠EAF=45°,BE=3,CF=4,則正方形的邊長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請你估計(jì)該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角形板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn)。圖①,②,③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:
(1)三角板ABC繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明。
(2)三角板ABC繞點(diǎn)P旋轉(zhuǎn),△PBE是否能為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請說明理由。(圖④不用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時(shí)刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com