【題目】如圖,正方形ABCD中,E、F分別為BC、CD的中點,AF與DE交與點G.則下列結論中:①AF⊥DE;②AD=BG;③GE+GF=GC;④S△AGB=2S四邊形ECFG.其中正確的是( 。
A.1個B.2個C.3個D.4個
【答案】D
【解析】
(1)證△ADF≌△DCE(SAS),∠AFD+∠CDE=90°=∠DGF,AF⊥DE,故①正確;(2)過點B作BH∥DE交AD于H,交AF于K,BH是AG的垂直平分線,BG=AB=AD,故②正確;(3)延長DE至M,使得EM=GF,連接CM,△CEM≌△CFG(SAS),△MCG為等腰直角三角形,故③正確;(4)過G點作TL∥AD,交AB于T,交DC于L,則GL⊥AB,GL⊥DC,證得△DGF∽△DCE,根據(jù)相似三角形性質可以求出相應面積關系..
解:
∵正方形ABCD,E,F均為中點
∴AD=BC=DC,EC=DF=$\frac{1}{2}$BC
∵在△ADF和△DCE中,
∴△ADF≌△DCE(SAS)
∴∠AFD=∠DEC
∵∠DEC+∠CDE=90°
∴∠AFD+∠CDE=90°=∠DGF
∴AF⊥DE,故①正確
如圖1,過點B作BH∥DE交AD于H,交AF于K
∵AF⊥DE,BH∥DE,E是BC的中點
∴BH⊥AG,H為AD的中點
∴BH是AG的垂直平分線
∴BG=AB=AD,故②正確
如圖2
延長DE至M,使得EM=GF,連接CM
∵∠AFD=∠DEC
∴∠CEM=∠CFG
又∵E,F分別為BC,DC的中點
∴CF=CE
∵在△CEM和△CFG中,
∴△CEM≌△CFG(SAS)
∴CM=CG,∠ECM=∠GCF
∵∠GCF+∠BCG=90°
∴∠ECM+∠BCG=∠MCG=90°
∴△MCG為等腰直角三角形
∴GM=GE+EM=GE+GF=
故③正確
如圖3,過G點作TL∥AD,交AB于T,交DC于L,則GL⊥AB,GL⊥DC
設EC=x,則DC=2x,DF=x,由勾股定理得DE
由DE⊥GF,易證得△DGF∽△DCE
∴
∴
∴S四邊形ECFG=S△DEC﹣
∴S四邊形ECFG=x2,S△DGF=x2
∵DF=x
∴GL=
∴TG=
∴S△AGB=
∴S△AGB=2S四邊形ECFG
故④正確,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A、B兩點的橫坐標分別是1和3,則S△AOB=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB的斜邊AB切⊙O于點C,OA交⊙O于點D,連接DC并延長交OB的延長線于點E.已知∠A=∠E,若AB=6,則BC的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化。某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據(jù)學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖。請你根據(jù)圖中提供的信息完成下列問題:
(1)求被調查學生的人數(shù),并將條形統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數(shù);
(3)已知該校有1500名學生,估計該校學生對政策內(nèi)容了解程度達到A等的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,射線BC交⊙O于點D,E是劣弧AD上一點,且=,過點E作EF⊥BC于點F,延長FE和BA的延長線交與點G.
(1)證明:GF是⊙O的切線;
(2)若AG=6,GE=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如右圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,如果點B的橫坐標為x,點C的縱坐標為y,那么表示y與x的函數(shù)關系的圖像大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在開展“經(jīng)典閱讀”活動中,某學校為了解全校學生利用課外時間閱讀的情況,學校團委隨機抽取若干名學生,調查他們一周的課外閱讀時間,并根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計表.根據(jù)圖表信息,解答下列問題:
頻率分布表
閱讀時間(小時) | 頻數(shù)(人) | 頻率 |
6 | 0.12 | |
0.24 | ||
15 | 0.3 | |
12 | ||
5 | 0.1 | |
合計 | 1 |
(1)求__________,_________;
(2)將頻數(shù)分布直方圖補充完整(畫圖后請標注相應的頻數(shù));
(3)在范圍內(nèi)的5名同學中恰好有2名男生和3名女生,現(xiàn)從中隨機挑選2名同學代表學校參加全市經(jīng)典閱讀比賽,請用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com