【題目】如圖,AB為⊙O的直徑,C,D為圓上的兩點(diǎn),OC∥BD,弦AD,BC相交于點(diǎn)E.
(1)求證:;
(2)若CE=1,EB=3,求⊙O的半徑;
(3)在(2)的條件下,過點(diǎn)C作⊙O的切線,交BA的延長線于點(diǎn)P,過點(diǎn)P作PQ∥CB交⊙O于F,Q兩點(diǎn)(點(diǎn)F在線段PQ上),求PQ的長.
【答案】(1)證明見解析;(2)半徑為;(3)PQ=
【解析】
(1)由等腰三角形的性質(zhì)和平行線的性質(zhì)可得∠OBC=∠CBD,即可證;
(2)通過證明△ACE∽△BCA,可得,可得AC=2,由勾股定理可求AB的長,即可求⊙O的半徑;
(3)過點(diǎn)O作OH⊥FQ于點(diǎn)H,連接OQ,通過證明△APC∽△CPB,可得,可求PA=,即可求PO的長,通過證明△PHO∽△BCA,
可求PH,OH的長,由勾股定理可求HQ的長,即可求PQ的長.
解:(1)∵OC=OB
∴∠OBC=∠OCB
∵OC∥BD
∴∠OCB=∠CBD
∴∠OBC=∠CBD
∴
(2)連接AC,
∵CE=1,EB=3,
∴BC=4
∵
∴∠CAD=∠ABC,且∠ACB=∠ACB
∴△ACE∽△BCA
∴
∴AC2=CBCE=4×1
∴AC=2,
∵AB是直徑
∴∠ACB=90°
∴AB=,
∴⊙O的半徑為.
(3)如圖,過點(diǎn)O作OH⊥FQ于點(diǎn)H,連接OQ,
∵PC是⊙O切線,
∴∠PCO=90°,且∠ACB=90°
∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA
∴△APC∽△CPB
∴,
∴PC=2PA,PC2=PAPB
∴4PA2=PA×(PA+2)
∴PA=,
∴PO=,
∵PQ∥BC
∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°
∴△PHO∽△BCA
∴,
即,
∴PH=,OH=,
∴HQ=,
∴PQ=PH+HQ=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“清明時(shí)節(jié)雨紛紛”是必然事件
B.為了解某燈管的使用壽命,可以采用普查的方式進(jìn)行
C.甲乙兩組身高數(shù)據(jù)的方差分別為、,那么乙組的身高比較整齊
D.一組數(shù)據(jù)3,5,4,5,6,7的眾數(shù)、中位數(shù)和平均數(shù)都是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年疫情期間,長沙市教育局出臺(tái)《長沙市中小學(xué)線上教學(xué)工作實(shí)施意見》,長沙市推出名師公益大課堂,為學(xué)生提供線上直播教學(xué),據(jù)統(tǒng)計(jì),第一批公益課受益學(xué)生萬人次,第三批公益課受益學(xué)生萬人次.
(1)如果第二批,第三批公益課受益學(xué)生人次的增長率相同,求這個(gè)增長率;
(2)按照這個(gè)增長率,預(yù)計(jì)第四批公益課受益學(xué)生將達(dá)到多少萬人次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,DE⊥AC,垂足為E,CF∥AB交AD延長線于點(diǎn)F,連接BF交⊙O于點(diǎn)G,連接DG.
(1)求證:DE為⊙O的切線;
(2)求證:四邊形ABFC為菱形;
(3)若OA=5,DG=2,求線段GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形 ABCD的兩條對角線相交于點(diǎn)O, E是BO的中點(diǎn).過B點(diǎn)作AC的平行線,交CE的延長線于點(diǎn)F,連接BF.
(1)求證:FB=AO;
(2)當(dāng)平行四邊形 ABCD滿足什么條件時(shí),四邊形AFBO是菱形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為落實(shí)“精準(zhǔn)扶貧惠民政策”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合作施工15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合作完成.則甲、乙兩隊(duì)合作完成該工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A、B兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。
(1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;
(2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請用列表法或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對雙方是否公平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從城出發(fā)勻速行駛至城.在整個(gè)行駛過程中,甲、乙兩車離城的距離(千米)與甲車行駛的時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①兩城相距千米;
②乙車比甲車晚出發(fā)小時(shí),卻早到小時(shí);
③乙車出發(fā)后小時(shí)追上甲車;
④當(dāng)甲、乙兩車相距千米時(shí),
其中正確的結(jié)論有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),.
(1)求該拋物線的函數(shù)表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)是拋物線對稱軸上一動(dòng)點(diǎn),記拋物線在,之間的部分為圖象(包含,兩點(diǎn)),如果直線與圖象有一個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,直接寫出點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com