【題目】如圖,在菱形中,,,以為坐標原點,以所在的直線為軸建立平面直角坐標系,如圖.按以下步驟作圖:①分別以點為圓心,以大于的長為半徑作弧,兩弧相交于點,②作直線于點.則點的坐標為( )

A.B.C.D.

【答案】C

【解析】

延長BCy軸于點D可求OD,CD的長,進一步求出BD的長,再解直角三角形BPE,求得BP的長,從而可確定點P的坐標.

延長BCy軸于點D,MNAB將于點E,如圖,

∵四邊形OABC是菱形,∠AOC=30°,

OA=OC=AB=BC=4,BCOA,∠ABC=30°,

∴∠OCD=AOC=30°

OD=OC=2,即點P的縱坐標是2.

DC=2,

BD=BC+CD=4+2,

MNAB的垂直平分線,

BE=AB=2,

BP=

DP=BD-BP=4+2-=4+.

∴點P的坐標為

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與反比例函數(shù)的圖象交于,兩點(點在點左側),已知點的縱坐標是2.

1)求反比例函數(shù)的表達式;

2)點上方的雙曲線上有一點,如果的面積為30,直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】35日是學雷鋒日,某校組織了以“向雷鋒同志學習”為主題的小報制作比賽,評分結果只有60,7080,90100五種.現(xiàn)從中隨機抽取部分作品,對其份數(shù)及成績進行整理,制成如下兩幅不完整的統(tǒng)計圖.根據(jù)以下信息,解答下列問題:

(1)求本次抽取了多少份作品,并補全兩幅統(tǒng)計圖;

(2)已知該校收到參賽作品共1200份,請估計該校學生比賽成績達到90分以上(90)的作品有多少份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016廣西柳州市)如圖,ABABC外接圓⊙O的直徑,點P是線段CA延長線上一點,點E在圓上且滿足=PAPC,連接CE,AE,OE,OECA于點D

(1)求證:PAE∽△PEC;

(2)求證:PE為⊙O的切線;

(3)若∠B=30°,AP=AC,求證:DO=DP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

1)求證:△ABE∽△ECM;

2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形,若能,求出BE的長;若不能,請說明理由;

3)求當線段AM最短時的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若定義橫、縱坐標均為整數(shù)的點叫做好點,則圖中陰影部分區(qū)域內(nèi)(不含邊界)好點的個數(shù)為________

(3)請根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0a、b為常數(shù),它們在同一坐標系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì).

現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結論.

(發(fā)現(xiàn)與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連結B′D.

結論1B′D∥AC;

結論2△AB′CABCD重疊部分的圖形是等腰三角形.

……

請利用圖1證明結論1或結論2(只需證明一個結論).

(應用與探究)在ABCD中,已知∠B=30°,將△ABC沿AC翻折至△AB′C,連結B′D.

1)如圖1,若,則∠ACB= °,BC= ;

2)如圖2,,BC=1,AB′與邊CD相交于點E,求△AEC的面積;

3)已知,當BC長為多少時,是△AB′D直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形臺球桌面ABCD上有兩個球P,QPQAB,球P連續(xù)撞擊臺球桌邊AB,BC反射后,撞到球Q.已知點MN是球在AB,BC邊的撞擊點,PQ=4,∠MPQ=30,且點PAB邊的距離為3,則四邊形PMNQ的周長為__

查看答案和解析>>

同步練習冊答案