【題目】某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,商場(chǎng)為了在中秋節(jié)和國(guó)慶節(jié)期間擴(kuò)大銷(xiāo)量,將售價(jià)從原來(lái)的每千克40元經(jīng)兩次調(diào)價(jià)后調(diào)至每千克32.4元.
(1)若該商場(chǎng)兩次調(diào)次的降價(jià)率相同,求這個(gè)降價(jià)率;
(2)現(xiàn)在假期結(jié)束了,商場(chǎng)準(zhǔn)備適當(dāng)漲價(jià),如果現(xiàn)在每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)量將減少20千克,現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
【答案】(1)10%;(2)每千克水果應(yīng)漲價(jià)5元
【解析】
(1) 設(shè)這個(gè)降價(jià)率為,根據(jù)每千克40元經(jīng)兩次調(diào)價(jià)后調(diào)至每千克32.4,列出方程求解即可;
(2)根據(jù)商場(chǎng)要保證每天盈利6000元,列出一元二次方程,然后求出其解,最后根據(jù)題意確定其值.
解:(1)設(shè)這個(gè)降價(jià)率為,由題意得
;
解得:,(舍去)
答:這個(gè)降價(jià)率為10%
(2)設(shè)每千克水果應(yīng)漲價(jià)元,
依題意得方程:,
整理,得,
解這個(gè)方程,得,.
要使顧客得到實(shí)惠,應(yīng)取.
答:每千克水果應(yīng)漲價(jià)5元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,給出以下五個(gè)結(jié)論:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),S四邊形AEPF=S△ABC,上述結(jié)論中始終正確有 ( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市擬于中秋節(jié)前天里銷(xiāo)售某品牌月餅,其進(jìn)價(jià)為元/.設(shè)第天的銷(xiāo)售價(jià)格為(元/),銷(xiāo)售量為.該超市根據(jù)以往的銷(xiāo)售經(jīng)驗(yàn)得出以下的銷(xiāo)售規(guī)律:①當(dāng)時(shí),;當(dāng)時(shí),與滿足一次函數(shù)關(guān)系,且當(dāng)時(shí),;時(shí),.②與的關(guān)系為.
(1)當(dāng)時(shí),與的關(guān)系式為 ;
(2)為多少時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)(元)最大?最大利潤(rùn)為多少?
(3)若超市希望第天到第天的日銷(xiāo)售利潤(rùn)(元)隨的增大而增大,則需要在當(dāng)天銷(xiāo)售價(jià)格的基礎(chǔ)上漲元/,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臺(tái)州人民翹首以盼的樂(lè)清灣大橋于2018年9月28日正式通車(chē),經(jīng)統(tǒng)計(jì)分析,大橋上的車(chē)流速度(千米/小時(shí))是車(chē)流密度(輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到220輛/千米的時(shí)候就造成交通堵塞,此時(shí)車(chē)流速度為0千米/小時(shí);當(dāng)車(chē)流密度不超過(guò)20輛/千米,車(chē)流速度為80千米/小時(shí),研究證明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).
(1)求大橋上車(chē)流密度為50/輛千米時(shí)的車(chē)流速度;
(2)在某一交通高峰時(shí)段,為使大橋上的車(chē)流速度大于60千米/小時(shí)且小于80千米/小時(shí),應(yīng)把大橋上的車(chē)流密度控制在什么范圍內(nèi)?
(3)車(chē)流量(輛/小時(shí))是單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),即:車(chē)流量車(chē)流速度車(chē)流密度,求大橋上車(chē)流量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,∠C=90°,AC=3cm,BC=4cm,動(dòng)點(diǎn) P 從點(diǎn) B 出發(fā)以 2cm/s 速度向點(diǎn) c 移動(dòng),同時(shí)動(dòng)點(diǎn) Q 從 C 出發(fā)以 1cm/s 的速度向點(diǎn) A 移動(dòng), 設(shè)它們的運(yùn)動(dòng)時(shí)間為 t.
(1)根據(jù)題意知:CQ= ,CP= ;(用含 t 的代數(shù)式表示)
(2)t 為何值時(shí),△CPQ 的面積等于△ABC 面積的?
(3)運(yùn)動(dòng)幾秒時(shí),△CPQ 與△CBA 相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D在AC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;
問(wèn)題探究
(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;
問(wèn)題解決
(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,C為⊙O上一點(diǎn),∠OAC=58°.
(Ⅰ)如圖①,過(guò)點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線交于點(diǎn)P,求∠P的大。
(Ⅱ)如圖②,P為AB上一點(diǎn),CP延長(zhǎng)線與⊙O交于點(diǎn)Q.若AQ=CQ,求∠APC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點(diǎn),點(diǎn)P是射線BC上的一個(gè)動(dòng)點(diǎn),連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當(dāng)折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時(shí)BP的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com