解:(1)原式=a
3b+a
3b-2c-2a
3b+2c=0;
(2)原式=-4xy+xy-6x=-3xy-6x;
(3)原式=4a
2-2a-6-4a
2+4a+10=2a+4;
(4)原式=2x-3x+
-
+5x-
x+3=
;
(5)原式=12x
2-9x+6-2+8x
2-2x=20x
2-11x+4;
(6)A-2B=3x
2-2xy+y
2-2(5x
2-4xy-2y
2)=x
2-2xy+y
2-10x
2+8xy+4y
2=-7x
2+6xy+5y
2.
分析:分析題干(1)~(5)都是對(duì)多項(xiàng)式的化簡(jiǎn)則分析得:由于原式中含有括號(hào)則先去括號(hào),在去括號(hào)時(shí)應(yīng)用乘法的分配律,然后合并同類項(xiàng)得到最簡(jiǎn)式.(6)將A、B的式子代入A-2B得:A-2B=3x
2-2xy+y
2-2(5x
2-4xy-2y
2)然后對(duì)其化簡(jiǎn),先應(yīng)用乘法的分配律對(duì)其取括號(hào),然后合并同類項(xiàng)得到最簡(jiǎn)式.
點(diǎn)評(píng):在整式化簡(jiǎn)時(shí),如果整式含有括號(hào)則先去括號(hào),然后合并同類項(xiàng).在去括號(hào)的過程中應(yīng)注意符號(hào)的變換.