【題目】如圖,△ABC中,BD平分∠ABC,且AD⊥BD,E為AC的中點(diǎn),AD=6cm,BD=8cm,BC=16cm,則DE的長(zhǎng)為_____cm.
【答案】3.
【解析】
延長(zhǎng)AD交BC于F,利用“角邊角”證明△BDF和△BDA全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=AD,FB=AB=10cm,再求出CF并判斷出DE是△ACF的中位線,然后根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE=CF.
如圖,延長(zhǎng)AD交BC于F,
∵BD平分∠ABC,
∴∠ABD=∠FBD,
∵AD⊥BD,
∴∠BDA=∠BDF=90°,AB=(cm),
在△BDF和△BDA中,
,
∴△BDF≌△BDA(ASA),
∴DF=AD,FB=AB=10cm,
∴CF=BC﹣FB=16﹣10=6cm,
又∵點(diǎn)E為AC的中點(diǎn),
∴DE是△ACF的中位線,
∴DE=CF=3cm.
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的橫坐標(biāo)為x,縱坐標(biāo)為2x,滿足這樣條件的點(diǎn)稱為“關(guān)系點(diǎn)”.
(1)在點(diǎn)A(1,2)、B(2,1)、M(,1)、N(1, )中,是“關(guān)系點(diǎn)”的為 ;
(2)⊙O的半徑為1,若在⊙O上存在“關(guān)系點(diǎn)”P(pán),求點(diǎn)P坐標(biāo);
(3)點(diǎn)C的坐標(biāo)為(3,0),若在⊙C上有且只有一個(gè)“關(guān)系點(diǎn)”P(pán),且“關(guān)系點(diǎn)”P(pán)的橫坐標(biāo)滿足-2≤x≤2.請(qǐng)直接寫(xiě)出⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽(yáng)臺(tái)的A處測(cè)得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測(cè)得兩建筑物之間的距離BC是28米,請(qǐng)你幫助小明求出建筑物CD的高度(精確到1米).
(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在長(zhǎng)方形中,。點(diǎn)從出發(fā),沿路線運(yùn)動(dòng),到停止;點(diǎn)出發(fā)時(shí)的速度為每秒,7秒時(shí)點(diǎn)的速度變?yōu)槊棵?/span>,圖②是點(diǎn)出發(fā)秒后,的面積與(秒)的關(guān)系圖象;
(1)根據(jù)題目提供的信息,求出的值為______________、的值為_________的值為___________;
(2)設(shè)點(diǎn)離開(kāi)點(diǎn)的路程為,
①7.5秒時(shí),的值為_____________________;
②請(qǐng)求出當(dāng)動(dòng)點(diǎn)改變速度后,與的關(guān)系式;
(3)點(diǎn)出發(fā)后幾秒,的面積是長(zhǎng)方形面積的?并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在邊AB上,AE=1,若點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),則△PAE周長(zhǎng)的最小值是( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是□ABCD的邊BC延長(zhǎng)線上一點(diǎn),AE交CD于點(diǎn)F,FG∥AD交AB于點(diǎn)G.
(1)填空:圖中與△CEF相似的三角形有__________;(寫(xiě)出圖中與△CEF相似的所有三角形)
(2)從(1)中選出一個(gè)三角形,并證明它與△CEF相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)∠ACE<90°且點(diǎn)E在直線AC的上方時(shí),當(dāng)這兩塊三角尺有一組邊互相平行時(shí),請(qǐng)直接寫(xiě)出∠ACE角度所有可能的值(不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB⊥軸于點(diǎn)B且S△ABO=.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C的坐標(biāo);
(3)求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,為面向鄉(xiāng)鎮(zhèn)市場(chǎng),蘇寧電器分店決定用76000元購(gòu)進(jìn)室內(nèi)用、室外用節(jié)能燈,已知這兩種類型的節(jié)能燈進(jìn)價(jià)、售價(jià)如下:
價(jià)格 類型 | 進(jìn)價(jià)(元/盞) | 售價(jià)(元/盞) |
室內(nèi)用節(jié)能燈 | 40 | 58 |
室外用節(jié)能燈 | 50 | 70 |
(1)若該分店共購(gòu)進(jìn)節(jié)能燈1700盞,問(wèn)購(gòu)進(jìn)的室內(nèi)用、室外用節(jié)能燈各多少盞?
(2)若該分店將進(jìn)貨全部售完后獲利要不少于32000元,問(wèn)至少需要購(gòu)進(jìn)多少盞室內(nèi)用節(jié)能燈?
(3)掛職鍛煉的大學(xué)生村官王祥自酬了4650元在該分店購(gòu)買(mǎi)這兩種類型的節(jié)能燈若干盞,分發(fā)給村民使用,其中室內(nèi)用節(jié)能燈盞數(shù)不少于室內(nèi)用節(jié)能燈盞數(shù)的2倍,問(wèn)王祥最多購(gòu)買(mǎi)室外用節(jié)能燈多少盞?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com