2-2:在三角形ABC中,若AB=4,BC=5,AC=4,則三角形ABC是 三角形。
科目:初中數學 來源: 題型:
如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1) 試判斷BE與FH的數量關系,并說明理由;
(2) 求證:∠ACF=90°;
(3) 連接AF,過A,E,F三點作圓,如圖2. 若EC=4,∠CEF=15°,求的長.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
某五金店購進一批數量足夠多的p型節(jié)能電燈 進價為35元/只,以50元/只銷售,每天銷售20只.市場調研發(fā)現:若每只每降l元,則每天銷售數量比原來多3只.現商店決定對Q型節(jié)能電燈進行降價促銷活動,每只降價x元(x為正整數).在促銷期間,商店要想每天獲得最大銷售利潤,每只應降價多少元?每天最大銷售毛利潤為多少?(注:每只節(jié)能燈的銷售毛利潤指每只節(jié)能燈的銷售價與進貨價的差)
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖(1),拋物線()與x軸交于A、B兩點,與y軸交于點C,直線AC的解析式為,拋物線的對稱軸與軸交于點E,點D(-2,-3)在對稱軸上.
(1)求此拋物線的解析式;
(2)如圖(1),若點M是線段OE上一點(點M不與點O、E重合),過點M作MN⊥x軸,交拋物線于點N,記點N關于拋物線對稱軸的對稱點為點F,點P是線段MN上一點,且滿足MN=4MP,連接FN、FP,作QP⊥PF交x軸于點Q,且滿足PF=PQ,求點Q的坐標;
(3)如圖(2),過點B作BK⊥x軸交直線AC于點K,連接DK、AD,點H是DK的中點,點G是線段AK上任意一點,將△DGH沿GH邊翻折得△DGH,求當KG為何值時,△DGH與△KGH重疊部分的面積是△DGK面積的.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com