【題目】在一個(gè)不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn).將球攪勻后從中隨機(jī)摸出一個(gè)球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動(dòng)進(jìn)行中記下的一組數(shù)據(jù)
摸球的次數(shù) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù) | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請(qǐng)你估計(jì),當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)試估算口袋中黑、白兩種顏色的球有多少只.
【答案】(1)0.6;(2),;(3)12,8
【解析】試題分析:(1)本題需先根據(jù)表中的數(shù)據(jù),估計(jì)出摸到白球的頻率.(2)本題根據(jù)摸到白球的頻率即可求出摸到白球和黑球的概率.(3)根據(jù)口袋中黑、白兩種顏色的球的概率即可求出口袋中黑、白兩種顏色的球有多少只.
試題解析:(1)根據(jù)題意可得當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近0.6;
(2)因?yàn)楫?dāng)n很大時(shí),摸到白球的頻率將會(huì)接近0.6;
所以摸到白球的概率是;摸到黑球的概率是
(3)因?yàn)槊桨浊虻母怕适?/span>,摸到黑球的概率是,
所以口袋中黑、白兩種顏色的球有白球是個(gè),
黑球是個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場(chǎng).現(xiàn)在甲、乙兩個(gè)工廠加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費(fèi)用每天100元,乙工廠加工費(fèi)用每天125元.
(1)甲、乙兩個(gè)工廠每天各能加工多少件新產(chǎn)品?
(2)兩個(gè)工廠同時(shí)合作完成這批產(chǎn)品,共付加工費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】★若兩個(gè)扇形滿足弧長(zhǎng)的比等于它們半徑的比,則稱這兩個(gè)扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OA∶O1A1=k(k為不等于0的常數(shù)).那么下面四個(gè)結(jié)論:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,小明和小亮來到一河邊,想用遮陽(yáng)帽和皮尺測(cè)量這條河的大致寬度,兩人在確保無(wú)安全隱患的情況下,先在河岸邊選擇了一點(diǎn)B(點(diǎn)B與河對(duì)岸岸邊上的一棵樹的底部點(diǎn)D所確定的直線垂直于河岸).
①小明在B點(diǎn)面向樹的方向站好,調(diào)整帽檐,使視線通過帽檐正好落在樹的底部點(diǎn)D處,如圖所示,這時(shí)小亮測(cè)得小明眼睛距地面的距離AB=1.7米;
②小明站在原地轉(zhuǎn)動(dòng)180°后蹲下,并保持原來的觀察姿態(tài)(除身體重心下移外,其他姿態(tài)均不變),這時(shí)視線通過帽檐落在了DB延長(zhǎng)線上的點(diǎn)E處,此時(shí)小亮測(cè)得BE=9.6米,小明的眼睛距地面的距離CB=1.2米.
根據(jù)以上測(cè)量過程及測(cè)量數(shù)據(jù),請(qǐng)你求出河寬BD是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)20米高的樓頂上有一信號(hào)塔DC,某同學(xué)為了測(cè)量信號(hào)塔的高度,在地面的A處測(cè)得信號(hào)塔下端D的仰角為30°,然后他正對(duì)塔的方向前進(jìn)了8米到達(dá)B處,又測(cè)得信號(hào)塔頂端C的仰角為45°,CE⊥AB于點(diǎn)E,E、B、A在一條直線上.則信號(hào)塔CD的高度為( )
A. 20米 B. (20-8)米 C. (20-28)米 D. (20-20)米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是平行四邊形ABCD對(duì)角線AC上兩點(diǎn),AE=CF.
證明(1)△ABE≌△CDF;
(2)BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的一種圖形的名稱 ;
(2)如圖 1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你直接寫出所有以格點(diǎn)為頂點(diǎn),OA、OB 為勾股邊且有對(duì)角線相等的勾股四邊形 OAMB 的頂點(diǎn)M 的坐標(biāo): ;
(3)如圖 2,將△ABC 繞頂點(diǎn) B 按順時(shí)針方向旋轉(zhuǎn) 60°,得到△DBE,連接 AD、DC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;
(4)若將圖 2 中△ABC 繞頂點(diǎn) B 按順時(shí)針方向旋轉(zhuǎn) a 度(0°<a <90°),得到△DBE,連接 AD、DC,則當(dāng)∠DCB= °時(shí),四邊形BECD 是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某環(huán)保小組為了解世博園的游客在園區(qū)內(nèi)購(gòu)買瓶裝飲料數(shù)量的情況,一天,他們分別在A、B、C三個(gè)出口處,對(duì)離開園區(qū)的游客進(jìn)行調(diào)查,其中在A出口調(diào)查所得的數(shù)據(jù)整理后繪成如下圖所示統(tǒng)計(jì)圖:
(1)在A出口的被調(diào)查游客中,購(gòu)買瓶裝飲料的數(shù)量的中位數(shù)是______瓶、眾數(shù)是______瓶、平均數(shù)是______瓶;
(2)已知A、B、C三個(gè)出口的游客量比為2:2:1,用上面圖表的人均購(gòu)買飲料數(shù)量計(jì)算:這一天景區(qū)內(nèi)若有50萬(wàn)游客,那么這一天購(gòu)買的飲料的總數(shù)是多少?
表一:
出口 | B | C |
人均購(gòu)買飲料數(shù)量(瓶) | 3 | 2 |
(3)若每瓶飲料要消耗0.5元處理包裝的環(huán)保費(fèi)用,該日需要花費(fèi)多少錢處理這些飲料瓶?由此請(qǐng)你對(duì)游客做一點(diǎn)環(huán)保宣傳建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,AB是⊙O的直徑,P為AB延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為C,連接AC,BC,作∠APC的平分線交AC于點(diǎn)D.
下列結(jié)論正確的是 (寫出所有正確結(jié)論的序號(hào))
①△CPD∽△DPA;
②若∠A=30°,則PC=BC;
③若∠CPA=30°,則PB=OB;
④無(wú)論點(diǎn)P在AB延長(zhǎng)線上的位置如何變化,∠CDP為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com